summaryrefslogblamecommitdiff
path: root/model/hpc_lstm.py
blob: 3e4e8782dafb76433c129d11a41af4b98cbadf3b (plain) (tree)





























                                                                                                         



                                                                               











                                                                                                         



                                                                                      

                                                                                

                                                                                              





                                                                 

                                                                                     

                                                                                              
                                  










                                                                          

                                                                               










                                                                                                          

                                                                           



                                                                 
                                                                                                   
                                                                                       
                                                                            




















                                                                        

                              




                                    
# HPC-LSTM : Hierarchical Predictive Coding LSTM

import theano
from theano import tensor
import numpy

from blocks.bricks import Softmax, Tanh, Logistic, Linear, MLP, Identity
from blocks.bricks.recurrent import LSTM
from blocks.initialization import IsotropicGaussian, Constant

from blocks.filter import VariableFilter
from blocks.roles import WEIGHT
from blocks.graph import ComputationGraph, apply_noise, apply_dropout


class Model():
    def __init__(self, config):
        inp = tensor.imatrix('bytes')

        in_onehot = tensor.eq(tensor.arange(config.io_dim, dtype='int16').reshape((1, 1, config.io_dim)),
                              inp[:, :, None])
        in_onehot.name = 'in_onehot'

        bricks = []
        states = []

        # Construct predictive LSTM hierarchy
        hidden = []
        costs = []
        next_target = in_onehot.dimshuffle(1, 0, 2)
        for i, (hdim, cf, q, esf) in enumerate(zip(config.hidden_dims,
                                                   config.cost_factors,
                                                   config.hidden_q,
                                                   config.error_scale_factor)):
            init_state = theano.shared(numpy.zeros((config.num_seqs, hdim)).astype(theano.config.floatX),
                                       name='st0_%d'%i)
            init_cell = theano.shared(numpy.zeros((config.num_seqs, hdim)).astype(theano.config.floatX),
                                       name='cell0_%d'%i)

            linear = Linear(input_dim=config.io_dim, output_dim=4*hdim,
                            name="lstm_in_%d"%i)
            lstm = LSTM(dim=hdim, activation=config.activation_function,
                        name="lstm_rec_%d"%i)
            linear2 = Linear(input_dim=hdim, output_dim=config.io_dim, name='lstm_out_%d'%i)
            tanh = Tanh('lstm_out_tanh_%d'%i)
            bricks += [linear, lstm, linear2, tanh]
            if i > 0:
                linear1 = Linear(input_dim=config.hidden_dims[i-1], output_dim=4*hdim,
                                 name='lstm_in2_%d'%i)
                bricks += [linear1]

            inter = linear.apply(theano.gradient.disconnected_grad(next_target))
            if i > 0:
                inter += linear1.apply(theano.gradient.disconnected_grad(hidden[-1][:-1,:,:]))
            new_hidden, new_cells = lstm.apply(inter,
                                               states=init_state,
                                               cells=init_cell)
            states.append((init_state, new_hidden[-1, :, :]))
            states.append((init_cell, new_cells[-1, :, :]))

            hidden += [tensor.concatenate([init_state[None,:,:], new_hidden],axis=0)]
            pred = tanh.apply(linear2.apply(hidden[-1][:-1,:,:]))
            diff = next_target - pred
            costs += [numpy.float32(cf) * ((abs(next_target)+q)*(diff**2)).sum(axis=2).mean()]
            next_target = diff*esf


        # Construct output from hidden states
        hidden = [s.dimshuffle(1, 0, 2) for s in hidden]

        out_parts = []
        out_dims = config.out_hidden + [config.io_dim]
        for i, (dim, state) in enumerate(zip(config.hidden_dims, hidden)):
            pred_linear = Linear(input_dim=dim, output_dim=out_dims[0],
                                name='pred_linear_%d'%i)
            bricks.append(pred_linear)
            lin = state if i == 0 else theano.gradient.disconnected_grad(state)
            out_parts.append(pred_linear.apply(lin))

        # Do prediction and calculate cost
        out = sum(out_parts)

        if len(out_dims) > 1:
            out = config.out_hidden_act[0](name='out_act0').apply(out)
            mlp = MLP(dims=out_dims,
                      activations=[x(name='out_act%d'%i) for i, x in enumerate(config.out_hidden_act[1:])]
                                 +[Identity()],
                      name='out_mlp')
            bricks.append(mlp)
            out = mlp.apply(out.reshape((inp.shape[0]*(inp.shape[1]+1),-1))
                           ).reshape((inp.shape[0],inp.shape[1]+1,-1))

        pred = out.argmax(axis=2)

        cost = Softmax().categorical_cross_entropy(inp.flatten(),
                                                   out[:,:-1,:].reshape((inp.shape[0]*inp.shape[1],
                                                                config.io_dim))).mean()
        error_rate = tensor.neq(inp.flatten(), pred[:,:-1].flatten()).mean()

        sgd_cost = cost + sum(costs)

        # Initialize all bricks
        for brick in bricks:
            brick.weights_init = IsotropicGaussian(0.1)
            brick.biases_init = Constant(0.)
            brick.initialize()


        # put stuff into self that is usefull for training or extensions
        self.sgd_cost = sgd_cost

        sgd_cost.name = 'sgd_cost'
        for i in range(len(costs)):
            costs[i].name = 'pred_cost_%d'%i
        cost.name = 'cost'
        error_rate.name = 'error_rate'
        self.monitor_vars = [costs, [cost],
                             [error_rate]]

        self.out = out[:,1:,:]
        self.pred = pred[:,1:]

        self.states = states


# vim: set sts=4 ts=4 sw=4 tw=0 et :