1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
|
from theano import tensor
from fuel.transformers import Batch, MultiProcessing
from fuel.streams import DataStream
from fuel.schemes import ConstantScheme, ShuffledExampleScheme
from blocks.bricks import application, MLP, Rectifier, Initializable, Identity
import error
import data
from data import transformers
from data.hdf5 import TaxiDataset, TaxiStream
from data.cut import TaxiTimeCutScheme
from model import ContextEmbedder
class Model(Initializable):
def __init__(self, config, **kwargs):
super(Model, self).__init__(**kwargs)
self.config = config
self.context_embedder = ContextEmbedder(config)
self.mlp = MLP(activations=[Rectifier() for _ in config.dim_hidden] + [Identity()],
dims=[config.dim_input] + config.dim_hidden + [config.dim_output])
self.inputs = self.context_embedder.inputs # + self.extremities.keys()
self.children = [ self.context_embedder, self.mlp ]
def _push_initialization_config(self):
self.mlp.weights_init = self.config.mlp_weights_init
self.mlp.biases_init = self.config.mlp_biases_init
@application(outputs=['destination'])
def predict(self, **kwargs):
embeddings = tuple(self.context_embedder.apply(**{k: kwargs[k] for k in self.context_embedder.inputs }))
inputs = tensor.concatenate(embeddings, axis=1)
outputs = self.mlp.apply(inputs)
if self.config.output_mode == "destination":
return data.train_gps_std * outputs + data.train_gps_mean
elif self.config.dim_output == "clusters":
return tensor.dot(outputs, self.classes)
@predict.property('inputs')
def predict_inputs(self):
return self.inputs
@application(outputs=['cost'])
def cost(self, **kwargs):
y_hat = self.predict(**kwargs)
y = tensor.concatenate((kwargs['destination_latitude'][:, None],
kwargs['destination_longitude'][:, None]), axis=1)
return error.erdist(y_hat, y).mean()
@cost.property('inputs')
def cost_inputs(self):
return self.inputs + ['destination_latitude', 'destination_longitude']
class Stream(object):
def __init__(self, config):
self.config = config
def train(self, req_vars):
valid = TaxiDataset(self.config.valid_set, 'valid.hdf5', sources=('trip_id',))
valid_trips_ids = valid.get_data(None, slice(0, valid.num_examples))[0]
stream = TaxiDataset('train')
if hasattr(self.config, 'use_cuts_for_training') and self.config.use_cuts_for_training:
stream = DataStream(stream, iteration_scheme=TaxiTimeCutScheme())
else:
stream = DataStream(stream, iteration_scheme=ShuffledExampleScheme(stream.num_examples))
stream = transformers.TaxiExcludeTrips(stream, valid_trips_ids)
stream = transformers.TaxiGenerateSplits(stream, max_splits=self.config.max_splits)
stream = transformers.taxi_add_datetime(stream)
# stream = transformers.taxi_add_first_last_len(stream, self.config.n_begin_end_pts)
stream = transformers.Select(stream, tuple(req_vars))
stream = Batch(stream, iteration_scheme=ConstantScheme(self.config.batch_size))
stream = MultiProcessing(stream)
return stream
def valid(self, req_vars):
stream = TaxiStream(self.config.valid_set, 'valid.hdf5')
stream = transformers.taxi_add_datetime(stream)
# stream = transformers.taxi_add_first_last_len(stream, self.config.n_begin_end_pts)
stream = transformers.Select(stream, tuple(req_vars))
return Batch(stream, iteration_scheme=ConstantScheme(1000))
def test(self, req_vars):
stream = TaxiStream('test')
stream = transformers.taxi_add_datetime(stream)
# stream = transformers.taxi_add_first_last_len(stream, self.config.n_begin_end_pts)
stream = transformers.taxi_remove_test_only_clients(stream)
return Batch(stream, iteration_scheme=ConstantScheme(1))
def inputs(self):
return {'call_type': tensor.bvector('call_type'),
'origin_call': tensor.ivector('origin_call'),
'origin_stand': tensor.bvector('origin_stand'),
'taxi_id': tensor.wvector('taxi_id'),
'timestamp': tensor.ivector('timestamp'),
'day_type': tensor.bvector('day_type'),
'missing_data': tensor.bvector('missing_data'),
'latitude': tensor.matrix('latitude'),
'longitude': tensor.matrix('longitude'),
'destination_latitude': tensor.vector('destination_latitude'),
'destination_longitude': tensor.vector('destination_longitude'),
'travel_time': tensor.ivector('travel_time'),
'first_k_latitude': tensor.matrix('first_k_latitude'),
'first_k_longitude': tensor.matrix('first_k_longitude'),
'last_k_latitude': tensor.matrix('last_k_latitude'),
'last_k_longitude': tensor.matrix('last_k_longitude'),
'input_time': tensor.ivector('input_time'),
'week_of_year': tensor.bvector('week_of_year'),
'day_of_week': tensor.bvector('day_of_week'),
'qhour_of_day': tensor.bvector('qhour_of_day')}
|