1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
|
from model.bidirectional import SegregatedBidirectional
class Model(Initializable):
@lazy()
def __init__(self, config, output_dim=2, **kwargs):
super(Model, self).__init__(**kwargs)
self.config = config
self.context_embedder = ContextEmbedder(config)
act = config.rec_activation() if hasattr(config, 'rec_activation') else None
self.rec = SegregatedBidirectional(LSTM(dim=config.hidden_state_dim, activation=act,
name='recurrent'))
self.fwd_fork = Fork([name for name in self.rec.prototype.apply.sequences if name!='mask'],
prototype=Linear(), name='fwd_fork')
self.bkwd_fork = Fork([name for name in self.rec.prototype.apply.sequences if name!='mask'],
prototype=Linear(), name='bkwd_fork')
rto_in = config.hidden_state_dim * 2 + sum(x[2] for x in config.dim_embeddings)
self.rec_to_output = MLP(activations=[Rectifier() for _ in config.dim_hidden] + [Identity()],
dims=[rto_in] + config.dim_hidden + [output_dim])
self.softmax = Softmax()
self.sequences = ['latitude', 'latitude_mask', 'longitude']
self.inputs = self.sequences + self.context_embedder.inputs
self.children = [ self.context_embedder, self.fwd_fork, self.bkwd_fork,
self.rec, self.rec_to_output, self.softmax ]
self.classes = theano.shared(numpy.array(config.tgtcls, dtype=theano.config.floatX),
name='classes')
def _push_allocation_config(self):
for i, fork in enumerate([self.fwd_fork, self.bkwd_fork]):
fork.input_dim = 2 * self.config.window_size
fork.output_dims = [ self.rec.children[i].get_dim(name)
for name in fork.output_names ]
def _push_initialization_config(self):
for brick in [self.fwd_fork, self.bkwd_fork, self.rec, self.rec_to_output]:
brick.weights_init = self.config.weights_init
brick.biases_init = self.config.biases_init
def process_outputs(self, outputs):
return tensor.dot(self.softmax.apply(outputs), self.classes)
@application(outputs=['destination'])
def predict(self, latitude, longitude, latitude_mask, **kwargs):
latitude = (latitude.dimshuffle(1, 0, 2) - data.train_gps_mean[0]) / data.train_gps_std[0]
longitude = (longitude.dimshuffle(1, 0, 2) - data.train_gps_mean[1]) / data.train_gps_std[1]
latitude_mask = latitude_mask.T
rec_in = tensor.concatenate((latitude, longitude), axis=2)
last_id = tensor.cast(latitude_mask.sum(axis=0) - 1, dtype='int64')
path = self.rec.apply(merge(self.fwd_fork.apply(rec_in, as_dict=True),
{'mask': latitude_mask}),
merge(self.bkwd_fork.apply(rec_in, as_dict=True),
{'mask': latitude_mask}))[0]
path_representation = (path[0][:, -self.config.hidden_state_dim:],
path[last_id - 1, tensor.arange(latitude_mask.shape[1])]
[:, :self.config.hidden_state_dim])
embeddings = tuple(self.context_embedder.apply(
**{k: kwargs[k] for k in self.context_embedder.inputs }))
inputs = tensor.concatenate(path_representation + embeddings, axis=1)
outputs = self.rec_to_output.apply(inputs)
return self.process_outputs(outputs)
@predict.property('inputs')
def predict_inputs(self):
return self.inputs
@application(outputs=['cost'])
def cost(self, **kwargs):
y_hat = self.predict(**kwargs)
y = tensor.concatenate((kwargs['destination_latitude'][:, None],
kwargs['destination_longitude'][:, None]), axis=1)
return error.erdist(y_hat, y).mean()
@cost.property('inputs')
def cost_inputs(self):
return self.inputs + ['destination_latitude', 'destination_longitude']
class Stream(object):
def __init__(self, config):
self.config = config
def train(self, req_vars):
stream = TaxiDataset('train', data.traintest_ds)
if hasattr(self.config, 'use_cuts_for_training') and self.config.use_cuts_for_training:
stream = DataStream(stream, iteration_scheme=TaxiTimeCutScheme())
else:
stream = DataStream(stream, iteration_scheme=ShuffledExampleScheme(stream.num_examples))
if not data.tvt:
valid = TaxiDataset(data.valid_set, data.valid_ds, sources=('trip_id',))
valid_trips_ids = valid.get_data(None, slice(0, valid.num_examples))[0]
stream = transformers.TaxiExcludeTrips(stream, valid_trips_ids)
if hasattr(self.config, 'max_splits'):
stream = transformers.TaxiGenerateSplits(stream, max_splits=self.config.max_splits)
elif not data.tvt:
stream = transformers.add_destination(stream)
if hasattr(self.config, 'train_max_len'):
idx = stream.sources.index('latitude')
def max_len_filter(x):
return len(x[idx]) <= self.config.train_max_len
stream = Filter(stream, max_len_filter)
stream = transformers.TaxiExcludeEmptyTrips(stream)
stream = transformers.window(stream, config.window_size)
stream = transformers.taxi_add_datetime(stream)
stream = transformers.Select(stream, tuple(v for v in req_vars if not v.endswith('_mask')))
stream = transformers.balanced_batch(stream, key='latitude',
batch_size=self.config.batch_size,
batch_sort_size=self.config.batch_sort_size)
stream = Padding(stream, mask_sources=['latitude', 'longitude'])
stream = transformers.Select(stream, req_vars)
stream = MultiProcessing(stream)
return stream
def valid(self, req_vars):
stream = TaxiStream(data.valid_set, data.valid_ds)
stream = transformers.window(stream, config.window_size)
stream = transformers.taxi_add_datetime(stream)
stream = transformers.Select(stream, tuple(v for v in req_vars if not v.endswith('_mask')))
stream = transformers.balanced_batch(stream, key='latitude',
batch_size=self.config.batch_size,
batch_sort_size=self.config.batch_sort_size)
stream = Padding(stream, mask_sources=['latitude', 'longitude'])
stream = transformers.Select(stream, req_vars)
stream = MultiProcessing(stream)
return stream
def test(self, req_vars):
stream = TaxiStream('test', data.traintest_ds)
stream = transformers.window(stream, config.window_size)
stream = transformers.taxi_add_datetime(stream)
stream = transformers.taxi_remove_test_only_clients(stream)
stream = transformers.Select(stream, tuple(v for v in req_vars if not v.endswith('_mask')))
stream = Batch(stream, iteration_scheme=ConstantScheme(self.config.batch_size))
stream = Padding(stream, mask_sources=['latitude', 'longitude'])
stream = transformers.Select(stream, req_vars)
return stream
def inputs(self):
return {'call_type': tensor.bvector('call_type'),
'origin_call': tensor.ivector('origin_call'),
'origin_stand': tensor.bvector('origin_stand'),
'taxi_id': tensor.wvector('taxi_id'),
'timestamp': tensor.ivector('timestamp'),
'day_type': tensor.bvector('day_type'),
'missing_data': tensor.bvector('missing_data'),
'latitude': tensor.tensor('latitude'),
'longitude': tensor.tensor('longitude'),
'latitude_mask': tensor.matrix('latitude_mask'),
'longitude_mask': tensor.matrix('longitude_mask'),
'destination_latitude': tensor.vector('destination_latitude'),
'destination_longitude': tensor.vector('destination_longitude'),
'travel_time': tensor.ivector('travel_time'),
'input_time': tensor.ivector('input_time'),
'week_of_year': tensor.bvector('week_of_year'),
'day_of_week': tensor.bvector('day_of_week'),
'qhour_of_day': tensor.bvector('qhour_of_day')}
|