1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
|
from theano import tensor
from blocks.bricks import application, MLP, Initializable, Linear, Rectifier, Identity
from blocks.bricks.base import lazy
from blocks.bricks.recurrent import Bidirectional, LSTM
from blocks.utils import shared_floatx_zeros
from blocks.bricks.parallel import Fork
from fuel.transformers import Batch, Padding, Mapping, SortMapping, Unpack, MultiProcessing
from fuel.streams import DataStream
from fuel.schemes import ConstantScheme, ShuffledExampleScheme
from model import ContextEmbedder
import data
from data import transformers
from data.hdf5 import TaxiDataset, TaxiStream
import error
class BidiRNN(Initializable):
@lazy()
def __init__(self, config, output_dim=2, **kwargs):
super(BidiRNN, self).__init__(**kwargs)
self.config = config
self.context_embedder = ContextEmbedder(config)
self.rec = Bidirectional(LSTM(dim = config.hidden_state_dim, name = 'recurrent'))
self.fork = Fork([name for name in self.rec.prototype.apply.sequences if name!='mask'], prototype=Linear())
rto_in = config.hidden_state_dim * 2 + sum(x[2] for x in config.dim_embeddings)
self.rec_to_output = MLP(activations=[Rectifier() for _ in config.dim_hidden] + [Identity()], dims=[rto_in] + config.dim_hidden + [output_dim])
self.sequences = ['latitude', 'latitude_mask', 'longitude']
self.inputs = self.sequences + self.context_embedder.inputs
self.children = [ self.context_embedder, self.fork, self.rec, self.rec_to_output ]
def _push_allocation_config(self):
self.fork.input_dim = 2
self.fork.output_dims = [ self.rec.children[0].get_dim(name) for name in self.fork.output_names ]
self.fork.weights_init = self.config.fork_weights_init
self.fork.biases_init = self.config.fork_biases_init
self.rec.weights_init = self.config.rec_weights_init
self.rec_to_output.weights_init = self.config.mlp_weights_init
self.rec_to_output.biases_init = self.config.mlp_biases_init
def process_outputs(self, outputs):
return outputs
@application(outputs=['destination'])
def predict(self, latitude, longitude, latitude_mask, **kwargs):
latitude = (latitude.T - data.train_gps_mean[0]) / data.train_gps_std[0]
longitude = (longitude.T - data.train_gps_mean[1]) / data.train_gps_std[1]
latitude_mask = latitude_mask.T
latitude = tensor.shape_padright(latitude)
longitude = tensor.shape_padright(longitude)
rec_in = tensor.concatenate((latitude, longitude), axis=2)
path = self.rec.apply(self.fork.apply(rec_in), mask=latitude_mask)[0]
path_representation = (path[0][:, -self.config.hidden_state_dim:],
path[-1][:, :self.config.hidden_state_dim])
embeddings = tuple(self.context_embedder.apply(**{k: kwargs[k] for k in self.context_embedder.inputs }))
inputs = tensor.concatenate(path_representation + embeddings, axis=1)
outputs = self.rec_to_output.apply(inputs)
return self.process_outputs(outputs)
@predict.property('inputs')
def predict_inputs(self):
return self.inputs
@application(outputs=['cost'])
def cost(self, **kwargs):
y_hat = self.predict(**kwargs)
y = tensor.concatenate((kwargs['destination_latitude'][:, None],
kwargs['destination_longitude'][:, None]), axis=1)
return error.erdist(y_hat, y).mean()
@cost.property('inputs')
def cost_inputs(self):
return self.inputs + ['destination_latitude', 'destination_longitude']
class UniformGenerator(object):
def __init__(self):
self.rng = numpy.random.RandomState(123)
def __call__(self, *args):
return float(self.rng.uniform())
class Stream(object):
def __init__(self, config):
self.config = config
def train(self, req_vars):
valid = TaxiDataset(self.config.valid_set, 'valid.hdf5', sources=('trip_id',))
valid_trips_ids = valid.get_data(None, slice(0, valid.num_examples))[0]
stream = TaxiDataset('train')
if hasattr(self.config, 'use_cuts_for_training') and self.config.use_cuts_for_training:
stream = DataStream(stream, iteration_scheme=TaxiTimeCutScheme())
else:
stream = DataStream(stream, iteration_scheme=ShuffledExampleScheme(stream.num_examples))
stream = transformers.TaxiExcludeTrips(stream, valid_trips_ids)
stream = transformers.TaxiGenerateSplits(stream, max_splits=self.config.max_splits)
if hasattr(self.config, 'shuffle_batch_size'):
stream = transformers.Batch(stream, iteration_scheme=ConstantScheme(self.config.shuffle_batch_size))
stream = Mapping(stream, SortMapping(key=UniformGenerator()))
stream = Unpack(stream)
stream = transformers.taxi_add_datetime(stream)
stream = transformers.add_destination(stream)
stream = transformers.Select(stream, tuple(v for v in req_vars if not v.endswith('_mask')))
stream = transformers.balanced_batch(stream, key='latitude', batch_size=self.config.batch_size, batch_sort_size=self.config.batch_sort_size)
stream = Padding(stream, mask_sources=['latitude', 'longitude'])
stream = transformers.Select(stream, req_vars)
stream = MultiProcessing(stream)
return stream
def valid(self, req_vars):
stream = TaxiStream(self.config.valid_set, 'valid.hdf5')
stream = transformers.taxi_add_datetime(stream)
stream = transformers.add_destination(stream)
stream = transformers.Select(stream, tuple(v for v in req_vars if not v.endswith('_mask')))
stream = Batch(stream, iteration_scheme=ConstantScheme(self.config.batch_size))
stream = Padding(stream, mask_sources=['latitude', 'longitude'])
stream = transformers.Select(stream, req_vars)
return stream
def test(self, req_vars):
stream = TaxiStream('test')
stream = transformers.taxi_add_datetime(stream)
stream = transformers.taxi_remove_test_only_clients(stream)
stream = transformers.Select(stream, tuple(v for v in req_vars if not v.endswith('_mask')))
stream = Batch(stream, iteration_scheme=ConstantScheme(self.config.batch_size))
stream = Padding(stream, mask_sources=['latitude', 'longitude'])
stream = transformers.Select(stream, req_vars)
return stream
def inputs(self):
return {'call_type': tensor.bvector('call_type'),
'origin_call': tensor.ivector('origin_call'),
'origin_stand': tensor.bvector('origin_stand'),
'taxi_id': tensor.wvector('taxi_id'),
'timestamp': tensor.ivector('timestamp'),
'day_type': tensor.bvector('day_type'),
'missing_data': tensor.bvector('missing_data'),
'latitude': tensor.matrix('latitude'),
'longitude': tensor.matrix('longitude'),
'latitude_mask': tensor.matrix('latitude_mask'),
'longitude_mask': tensor.matrix('longitude_mask'),
'destination_latitude': tensor.vector('destination_latitude'),
'destination_longitude': tensor.vector('destination_longitude'),
'travel_time': tensor.ivector('travel_time'),
'input_time': tensor.ivector('input_time'),
'week_of_year': tensor.bvector('week_of_year'),
'day_of_week': tensor.bvector('day_of_week'),
'qhour_of_day': tensor.bvector('qhour_of_day')}
|