aboutsummaryrefslogtreecommitdiff
path: root/model.py
blob: 8e10e245b7086484f90e0389f34ae4dc4d07f2fb (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
import logging
import os
import sys
import importlib
from argparse import ArgumentParser

import csv

import numpy

import theano
from theano import printing
from theano import tensor
from theano.ifelse import ifelse

from blocks.filter import VariableFilter

from blocks.bricks import MLP, Rectifier, Linear, Sigmoid, Identity
from blocks.bricks.lookup import LookupTable

from blocks.initialization import IsotropicGaussian, Constant
from blocks.model import Model

from fuel.datasets.hdf5 import H5PYDataset
from fuel.transformers import Batch
from fuel.streams import DataStream
from fuel.schemes import ConstantScheme, SequentialExampleScheme

from blocks.algorithms import GradientDescent, Scale, AdaDelta, Momentum
from blocks.graph import ComputationGraph
from blocks.main_loop import MainLoop
from blocks.extensions import Printing
from blocks.extensions.saveload import Dump, LoadFromDump
from blocks.extensions.monitoring import DataStreamMonitoring

import data
import transformers
import hdist
import apply_model

if __name__ == "__main__":
    if len(sys.argv) != 2:
        print >> sys.stderr, 'Usage: %s config' % sys.argv[0]
        sys.exit(1)
    config = importlib.import_module(sys.argv[1])

def setup_stream():
    # Load the training and test data
    train = H5PYDataset('/data/lisatmp3/simonet/taxi/data.hdf5', which_set='train', subset=slice(0, config.train_size - config.n_valid), load_in_memory=True)
    train = DataStream(train, iteration_scheme=SequentialExampleScheme(config.train_size - config.n_valid))
    train = transformers.add_first_k(config.n_begin_end_pts, train)
    train = transformers.add_random_k(config.n_begin_end_pts, train)
    train = transformers.add_destination(train)
    train = transformers.Select(train, ('origin_stand', 'origin_call', 'first_k_latitude', 'last_k_latitude', 'first_k_longitude', 'last_k_longitude', 'destination_latitude', 'destination_longitude'))
    train_stream = Batch(train, iteration_scheme=ConstantScheme(config.batch_size))

    valid = H5PYDataset('/data/lisatmp3/simonet/taxi/data.hdf5', which_set='train', subset=slice(config.train_size - config.n_valid, config.train_size), load_in_memory=True)
    valid = DataStream(valid, iteration_scheme=SequentialExampleScheme(config.n_valid))
    valid = transformers.add_first_k(config.n_begin_end_pts, valid)
    valid = transformers.add_last_k(config.n_begin_end_pts, valid)
    valid = transformers.add_destination(valid)
    valid = transformers.Select(valid, ('origin_stand', 'origin_call', 'first_k_latitude', 'last_k_latitude', 'first_k_longitude', 'last_k_longitude', 'destination_latitude', 'destination_longitude'))
    valid_stream = Batch(valid, iteration_scheme=ConstantScheme(1000))
    
    return (train_stream, valid_stream)

def main():
    # The input and the targets
    x_firstk_latitude = (tensor.matrix('first_k_latitude') - data.porto_center[0]) / data.data_std[0]
    x_firstk_longitude = (tensor.matrix('first_k_longitude') - data.porto_center[1]) / data.data_std[1]
    x_firstk = tensor.concatenate((x_firstk_latitude, x_firstk_longitude), axis=1)

    x_lastk_latitude = (tensor.matrix('last_k_latitude') - data.porto_center[0]) / data.data_std[0]
    x_lastk_longitude = (tensor.matrix('last_k_longitude') - data.porto_center[1]) / data.data_std[1]
    x_lastk = tensor.concatenate((x_lastk_latitude, x_lastk_longitude), axis=1)

    x_client = tensor.lvector('origin_call')
    x_stand = tensor.lvector('origin_stand')
    y = tensor.concatenate((tensor.vector('destination_latitude')[:, None], tensor.vector('destination_longitude')[:, None]), axis=1)

    # Define the model
    client_embed_table = LookupTable(length=config.n_clients+1, dim=config.dim_embed, name='client_lookup')
    stand_embed_table = LookupTable(length=config.n_stands+1, dim=config.dim_embed, name='stand_lookup')
    mlp = MLP(activations=[Rectifier() for _ in config.dim_hidden] + [None],
                       dims=[config.dim_input] + config.dim_hidden + [config.dim_output])

    # Create the Theano variables
    client_embed = client_embed_table.apply(x_client).flatten(ndim=2)
    stand_embed = stand_embed_table.apply(x_stand).flatten(ndim=2)
    inputs = tensor.concatenate([x_firstk, x_lastk, client_embed, stand_embed],
                                axis=1)
    # inputs = theano.printing.Print("inputs")(inputs)
    outputs = mlp.apply(inputs)

    # Normalize & Center
    outputs = data.data_std * outputs + data.porto_center
    outputs.name = 'outputs'

    # Calculate the cost
    cost = (outputs - y).norm(2, axis=1).mean()
    cost.name = 'cost'
    hcost = hdist.hdist(outputs, y).mean()
    hcost.name = 'hcost'

    # Initialization
    client_embed_table.weights_init = IsotropicGaussian(0.001)
    stand_embed_table.weights_init = IsotropicGaussian(0.001)
    mlp.weights_init = IsotropicGaussian(0.01)
    mlp.biases_init = Constant(0.001)

    client_embed_table.initialize()
    stand_embed_table.initialize()
    mlp.initialize()

    (train_stream, valid_stream) = setup_stream()

    # Training
    cg = ComputationGraph(cost)
    algorithm = GradientDescent(
        cost=cost,
        # step_rule=AdaDelta(decay_rate=0.5),
        step_rule=Momentum(learning_rate=config.learning_rate, momentum=config.momentum),
        params=cg.parameters)

    extensions=[DataStreamMonitoring([cost, hcost], valid_stream,
                                     prefix='valid',
                                     every_n_batches=1000),
                Printing(every_n_batches=1000),
                # Dump('taxi_model', every_n_batches=100),
                # LoadFromDump('taxi_model'),
                ]

    main_loop = MainLoop(
        model=Model([cost]),
        data_stream=train_stream,
        algorithm=algorithm,
        extensions=extensions)
    main_loop.run()

    # Produce an output on the test data
    '''
    test = data.test_data
    test = DataStream(test)
    test = transformers.add_first_k(conifg.n_begin_end_pts, test)
    test = transformers.add_last_k(config.n_begin_end_pts, test)
    test = transformers.Select(test, ('trip_id', 'origin_stand', 'origin_call', 'first_k', 'last_k'))
    test_stream = Batch(test, iteration_scheme=ConstantScheme(1000))

    outfile = open("test-output.csv", "w")
    outcsv = csv.writer(outfile)
    outcsv.writerow(["TRIP_ID", "LATITUDE", "LONGITUDE"])
    for out in apply_model.Apply(outputs=outputs, stream=test_stream, return_vars=['trip_id', 'outputs']):
        dest = out['outputs']
        for i, trip in enumerate(out['trip_id']):
            outcsv.writerow([trip, repr(dest[i, 1]), repr(dest[i, 0])])
    outfile.close()
    '''


if __name__ == "__main__":
    logging.basicConfig(level=logging.INFO)
    main()