1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
|
import datetime
import numpy
import theano
import fuel
from fuel.schemes import ConstantScheme
from fuel.transformers import Batch, Mapping, SortMapping, Transformer, Unpack, FilterSources
import data
fuel.config.default_seed = 123
def at_least_k(k, v, pad_at_begin, is_longitude):
if len(v) == 0:
v = numpy.array([data.train_gps_mean[1 if is_longitude else 0]], dtype=theano.config.floatX)
if len(v) < k:
if pad_at_begin:
v = numpy.concatenate((numpy.full((k - len(v),), v[0]), v))
else:
v = numpy.concatenate((v, numpy.full((k - len(v),), v[-1])))
return v
Select = FilterSources
class TaxiExcludeTrips(Transformer):
produces_examples = True
def __init__(self, stream, exclude_list):
super(TaxiExcludeTrips, self).__init__(stream)
self.id_trip_id = stream.sources.index('trip_id')
self.exclude = {v: True for v in exclude_list}
def get_data(self, request=None):
if request is not None: raise ValueError
while True:
data = next(self.child_epoch_iterator)
if not data[self.id_trip_id] in self.exclude: break
return data
class TaxiExcludeEmptyTrips(Transformer):
produces_examples = True
def __init__(self, stream):
super(TaxiExcludeEmptyTrips, self).__init__(stream)
self.latitude = stream.sources.index('latitude')
def get_data(self, request=None):
if request is not None: raise ValueError
while True:
data = next(self.child_epoch_iterator)
if len(data[self.latitude])>0: break
return data
class TaxiGenerateSplits(Transformer):
produces_examples = True
def __init__(self, data_stream, max_splits=-1):
super(TaxiGenerateSplits, self).__init__(data_stream)
self.sources = data_stream.sources
if not data.tvt:
self.sources += ('destination_latitude', 'destination_longitude', 'travel_time')
self.max_splits = max_splits
self.data = None
self.splits = []
self.isplit = 0
self.id_latitude = data_stream.sources.index('latitude')
self.id_longitude = data_stream.sources.index('longitude')
self.rng = numpy.random.RandomState(fuel.config.default_seed)
def get_data(self, request=None):
if request is not None:
raise ValueError
while self.isplit >= len(self.splits):
self.data = next(self.child_epoch_iterator)
self.splits = range(len(self.data[self.id_longitude]))
self.rng.shuffle(self.splits)
if self.max_splits != -1 and len(self.splits) > self.max_splits:
self.splits = self.splits[:self.max_splits]
self.isplit = 0
i = self.isplit
self.isplit += 1
n = self.splits[i]+1
r = list(self.data)
r[self.id_latitude] = numpy.array(r[self.id_latitude][:n], dtype=theano.config.floatX)
r[self.id_longitude] = numpy.array(r[self.id_longitude][:n], dtype=theano.config.floatX)
r = tuple(r)
if data.tvt:
return r
else:
dlat = numpy.float32(self.data[self.id_latitude][-1])
dlon = numpy.float32(self.data[self.id_longitude][-1])
ttime = numpy.int32(15 * (len(self.data[self.id_longitude]) - 1))
return r + (dlat, dlon, ttime)
class _taxi_add_first_last_len_helper(object):
def __init__(self, k, id_latitude, id_longitude):
self.k = k
self.id_latitude = id_latitude
self.id_longitude = id_longitude
def __call__(self, data):
first_k = (numpy.array(at_least_k(self.k, data[self.id_latitude], False, False)[:self.k],
dtype=theano.config.floatX),
numpy.array(at_least_k(self.k, data[self.id_longitude], False, True)[:self.k],
dtype=theano.config.floatX))
last_k = (numpy.array(at_least_k(self.k, data[self.id_latitude], True, False)[-self.k:],
dtype=theano.config.floatX),
numpy.array(at_least_k(self.k, data[self.id_longitude], True, True)[-self.k:],
dtype=theano.config.floatX))
input_time = (numpy.int32(15 * (len(data[self.id_latitude]) - 1)),)
return first_k + last_k + input_time
def taxi_add_first_last_len(stream, k):
fun = _taxi_add_first_last_len_helper(k, stream.sources.index('latitude'), stream.sources.index('longitude'))
return Mapping(stream, fun, add_sources=('first_k_latitude', 'first_k_longitude', 'last_k_latitude', 'last_k_longitude', 'input_time'))
class _taxi_add_datetime_helper(object):
def __init__(self, key):
self.key = key
def __call__(self, data):
ts = data[self.key]
date = datetime.datetime.utcfromtimestamp(ts)
yearweek = date.isocalendar()[1] - 1
info = (numpy.int8(51 if yearweek == 52 else yearweek),
numpy.int8(date.weekday()),
numpy.int8(date.hour * 4 + date.minute / 15))
return info
def taxi_add_datetime(stream):
fun = _taxi_add_datetime_helper(stream.sources.index('timestamp'))
return Mapping(stream, fun, add_sources=('week_of_year', 'day_of_week', 'qhour_of_day'))
class _balanced_batch_helper(object):
def __init__(self, key):
self.key = key
def __call__(self, data):
return len(data[self.key])
def balanced_batch(stream, key, batch_size, batch_sort_size):
stream = Batch(stream, iteration_scheme=ConstantScheme(batch_size * batch_sort_size))
comparison = _balanced_batch_helper(stream.sources.index(key))
stream = Mapping(stream, SortMapping(comparison))
stream = Unpack(stream)
return Batch(stream, iteration_scheme=ConstantScheme(batch_size))
class _taxi_remove_test_only_clients_helper(object):
def __init__(self, key):
self.key = key
def __call__(self, x):
x = list(x)
if x[self.key] >= data.origin_call_train_size:
x[self.key] = numpy.int32(0)
return tuple(x)
def taxi_remove_test_only_clients(stream):
fun = _taxi_remove_test_only_clients_helper(stream.sources.index('origin_call'))
return Mapping(stream, fun)
class _add_destination_helper(object):
def __init__(self, latitude, longitude):
self.latitude = latitude
self.longitude = longitude
def __call__(self, data):
return (data[self.latitude][-1], data[self.longitude][-1])
def add_destination(stream):
fun = _add_destination_helper(stream.sources.index('latitude'), stream.sources.index('longitude'))
return Mapping(stream, fun, add_sources=('destination_latitude', 'destination_longitude'))
|