aboutsummaryrefslogtreecommitdiff
path: root/data/transformers.py
blob: b3a84867a6695c2611d25044c18345627686f508 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
import datetime

import numpy
import theano

import fuel

from fuel.schemes import ConstantScheme
from fuel.transformers import Batch, Mapping, SortMapping, Transformer, Unpack

import data

fuel.config.default_seed = 123

def at_least_k(k, v, pad_at_begin, is_longitude):
    if len(v) == 0:
        v = numpy.array([data.train_gps_mean[1 if is_longitude else 0]], dtype=theano.config.floatX)
    if len(v) < k:
        if pad_at_begin:
            v = numpy.concatenate((numpy.full((k - len(v),), v[0]), v))
        else:
            v = numpy.concatenate((v, numpy.full((k - len(v),), v[-1])))
    return v


class Select(Transformer):
    produces_examples = True

    def __init__(self, data_stream, sources):
        super(Select, self).__init__(data_stream)
        self.ids = [data_stream.sources.index(source) for source in sources]
        self.sources=sources

    def get_data(self, request=None):
        if request is not None:
            raise ValueError
        data=next(self.child_epoch_iterator)
        return [data[id] for id in self.ids]

class TaxiExcludeTrips(Transformer):
    produces_examples = True

    def __init__(self, stream, exclude_list):
        super(TaxiExcludeTrips, self).__init__(stream)
        self.id_trip_id = stream.sources.index('trip_id')
        self.exclude = {v: True for v in exclude_list}
    def get_data(self, request=None):
        if request is not None: raise ValueError
        while True:
            data = next(self.child_epoch_iterator)
            if not data[self.id_trip_id] in self.exclude: break
        return data

class TaxiExcludeEmptyTrips(Transformer):
    produces_examples = True

    def __init__(self, stream):
        super(TaxiExcludeEmptyTrips, self).__init__(stream)
        self.latitude = stream.sources.index('latitude')
    def get_data(self, request=None):
        if request is not None: raise ValueError
        while True:
            data = next(self.child_epoch_iterator)
            if len(data[self.latitude])>0: break
        return data
        
class TaxiGenerateSplits(Transformer):
    produces_examples = True

    def __init__(self, data_stream, max_splits=-1):
        super(TaxiGenerateSplits, self).__init__(data_stream)

        self.sources = data_stream.sources 
        if not data.tvt:
            self.sources += ('destination_latitude', 'destination_longitude', 'travel_time')
        self.max_splits = max_splits
        self.data = None
        self.splits = []
        self.isplit = 0
        self.id_latitude = data_stream.sources.index('latitude')
        self.id_longitude = data_stream.sources.index('longitude')

        self.rng = numpy.random.RandomState(fuel.config.default_seed)

    def get_data(self, request=None):
        if request is not None:
            raise ValueError
        while self.isplit >= len(self.splits):
            self.data = next(self.child_epoch_iterator)
            self.splits = range(len(self.data[self.id_longitude]))
            self.rng.shuffle(self.splits)
            if self.max_splits != -1 and len(self.splits) > self.max_splits:
                self.splits = self.splits[:self.max_splits]
            self.isplit = 0
        
        i = self.isplit
        self.isplit += 1
        n = self.splits[i]+1

        r = list(self.data)

        r[self.id_latitude] = numpy.array(r[self.id_latitude][:n], dtype=theano.config.floatX)
        r[self.id_longitude] = numpy.array(r[self.id_longitude][:n], dtype=theano.config.floatX)

        r = tuple(r)

        if data.tvt:
            return r
        else:
            dlat = numpy.float32(self.data[self.id_latitude][-1])
            dlon = numpy.float32(self.data[self.id_longitude][-1])
            ttime = numpy.int32(15 * (len(self.data[self.id_longitude]) - 1))
            return r + (dlat, dlon, ttime)

class _taxi_add_first_last_len_helper(object):
    def __init__(self, k, id_latitude, id_longitude):
        self.k = k
        self.id_latitude = id_latitude
        self.id_longitude = id_longitude
    def __call__(self, data):
        first_k = (numpy.array(at_least_k(self.k, data[self.id_latitude], False, False)[:self.k],
                               dtype=theano.config.floatX),
                   numpy.array(at_least_k(self.k, data[self.id_longitude], False, True)[:self.k],
                               dtype=theano.config.floatX))
        last_k = (numpy.array(at_least_k(self.k, data[self.id_latitude], True, False)[-self.k:],
                            dtype=theano.config.floatX),
                  numpy.array(at_least_k(self.k, data[self.id_longitude], True, True)[-self.k:],
                              dtype=theano.config.floatX))
        input_time = (numpy.int32(15 * (len(data[self.id_latitude]) - 1)),)
        return first_k + last_k + input_time

def taxi_add_first_last_len(stream, k):
    fun = _taxi_add_first_last_len_helper(k, stream.sources.index('latitude'), stream.sources.index('longitude'))
    return Mapping(stream, fun, add_sources=('first_k_latitude', 'first_k_longitude', 'last_k_latitude', 'last_k_longitude', 'input_time'))


class _taxi_add_datetime_helper(object):
    def __init__(self, key):
        self.key = key
    def __call__(self, data):
        ts = data[self.key]
        date = datetime.datetime.utcfromtimestamp(ts)
        yearweek = date.isocalendar()[1] - 1
        info = (numpy.int8(51 if yearweek == 52 else yearweek),
                numpy.int8(date.weekday()),
                numpy.int8(date.hour * 4 + date.minute / 15))
        return info

def taxi_add_datetime(stream):
    fun = _taxi_add_datetime_helper(stream.sources.index('timestamp'))
    return Mapping(stream, fun, add_sources=('week_of_year', 'day_of_week', 'qhour_of_day'))


class _balanced_batch_helper(object):
    def __init__(self, key):
        self.key = key
    def __call__(self, data):
        return len(data[self.key])

def balanced_batch(stream, key, batch_size, batch_sort_size):
    stream = Batch(stream, iteration_scheme=ConstantScheme(batch_size * batch_sort_size))
    comparison = _balanced_batch_helper(stream.sources.index(key))
    stream = Mapping(stream, SortMapping(comparison))
    stream = Unpack(stream)
    return Batch(stream, iteration_scheme=ConstantScheme(batch_size))


class _taxi_remove_test_only_clients_helper(object):
    def __init__(self, key):
        self.key = key
    def __call__(self, x):
        x = list(x)
        if x[self.key] >= data.origin_call_train_size:
            x[self.key] = numpy.int32(0)
        return tuple(x)

def taxi_remove_test_only_clients(stream):
    fun = _taxi_remove_test_only_clients_helper(stream.sources.index('origin_call'))
    return Mapping(stream, fun)


class _add_destination_helper(object):
    def __init__(self, latitude, longitude):
        self.latitude = latitude
        self.longitude = longitude
    def __call__(self, data):
        return (data[self.latitude][-1], data[self.longitude][-1])

def add_destination(stream):
    fun = _add_destination_helper(stream.sources.index('latitude'), stream.sources.index('longitude'))
    return Mapping(stream, fun, add_sources=('destination_latitude', 'destination_longitude'))