aboutsummaryrefslogtreecommitdiff
path: root/data/rfc4180.py
blob: b6fe5b1cbc7d7cb16757cc0a717b89e550839167 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
import ast
import csv
import numpy

from fuel.datasets import Dataset
from fuel.streams import DataStream
from fuel.iterator import DataIterator

import data
from data.hdf5 import origin_call_normalize, taxi_id_normalize


class TaxiData(Dataset):
    example_iteration_scheme=None

    class State:
        __slots__ = ('file', 'index', 'reader')

    def __init__(self, pathes, columns, has_header=False):
        if not isinstance(pathes, list):
            pathes=[pathes]
        assert len(pathes)>0
        self.columns=columns
        self.provides_sources = tuple(map(lambda x: x[0], columns))
        self.pathes=pathes
        self.has_header=has_header
        super(TaxiData, self).__init__()

    def open(self):
        state=self.State()
        state.file=open(self.pathes[0])
        state.index=0
        state.reader=csv.reader(state.file)
        if self.has_header:
            state.reader.next()
        return state

    def close(self, state):
        state.file.close()

    def reset(self, state):
        if state.index==0:
            state.file.seek(0)
        else:
            state.index=0
            state.file.close()
            state.file=open(self.pathes[0])
        state.reader=csv.reader(state.file)
        return state

    def get_data(self, state, request=None):
        if request is not None:
            raise ValueError
        try:
            line=state.reader.next()
        except (ValueError, StopIteration):
            # print state.index
            state.file.close()
            state.index+=1
            if state.index>=len(self.pathes):
                raise StopIteration
            state.file=open(self.pathes[state.index])
            state.reader=csv.reader(state.file)
            if self.has_header:
                state.reader.next()
            return self.get_data(state)

        values = []
        for _, constructor in self.columns:
            values.append(constructor(line))
        return tuple(values)

taxi_columns = [
    ("trip_id", lambda l: l[0]),
    ("call_type", lambda l: ord(l[1])-ord('A')),
    ("origin_call", lambda l: 0 if l[2] == '' or l[2] == 'NA' else origin_call_normalize(int(l[2]))),
    ("origin_stand", lambda l: 0 if l[3] == '' or l[3] == 'NA' else int(l[3])),
    ("taxi_id", lambda l: taxi_id_normalize(int(l[4]))),
    ("timestamp", lambda l: int(l[5])),
    ("day_type", lambda l: ord(l[6])-ord('A')),
    ("missing_data", lambda l: l[7][0] == 'T'),
    ("polyline", lambda l: map(tuple, ast.literal_eval(l[8]))),
    ("longitude", lambda l: map(lambda p: p[0], ast.literal_eval(l[8]))),
    ("latitude", lambda l: map(lambda p: p[1], ast.literal_eval(l[8]))),
]

taxi_columns_valid = taxi_columns + [
    ("destination_longitude", lambda l: numpy.float32(float(l[9]))),
    ("destination_latitude", lambda l: numpy.float32(float(l[10]))),
    ("time", lambda l: int(l[11])),
]

train_file="%s/train.csv" % data.path
valid_file="%s/valid2-cut.csv" % data.path
test_file="%s/test.csv" % data.path

train_data=TaxiData(train_file, taxi_columns, has_header=True)
valid_data = TaxiData(valid_file, taxi_columns_valid)
test_data = TaxiData(test_file, taxi_columns, has_header=True)

valid_trips = [l for l in open("%s/valid2-cut-ids.txt" % data.path)]

def train_it():
    return DataIterator(DataStream(train_data))

def test_it():
    return DataIterator(DataStream(valid_data))