aboutsummaryrefslogtreecommitdiff
path: root/data/make_tvt.py
blob: 983eb0f588cd357f1dd74f1b92bfbf6203ed9ec6 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
#!/usr/bin/env python2
# Separate the training set into a Training Valid and Test set

import os
import sys
import importlib
import cPickle

import h5py
import numpy
import theano

import data
from data.hdf5 import TaxiDataset
from error import hdist


native_fields = {
    'trip_id': 'S19',
    'call_type': numpy.int8,
    'origin_call': numpy.int32,
    'origin_stand': numpy.int8,
    'taxi_id': numpy.int16,
    'timestamp': numpy.int32,
    'day_type': numpy.int8,
    'missing_data': numpy.bool,
    'latitude': data.Polyline,
    'longitude': data.Polyline,
}

all_fields = {
    'path_len': numpy.int16,
    'cluster': numpy.int16,
    'destination_latitude': numpy.float32,
    'destination_longitude': numpy.float32,
    'travel_time': numpy.int32,
}

all_fields.update(native_fields)

def cut_me_baby(train, cuts, excl={}):
    dset = {}
    cuts.sort()
    cut_id = 0
    for i in xrange(data.train_size):
        if i%10000==0 and i!=0:
            print >> sys.stderr, 'cut: {:d} done'.format(i)
        if i in excl:
            continue
        time = train['timestamp'][i]
        latitude = train['latitude'][i]
        longitude = train['longitude'][i]

        if len(latitude) == 0:
            continue

        end_time = time + 15 * (len(latitude) - 1)

        while cuts[cut_id] < time:
            if cut_id >= len(cuts)-1:
                return dset
            cut_id += 1

        if end_time < cuts[cut_id]:
            continue
        else:
            dset[i] = (cuts[cut_id] - time) / 15 + 1

    return dset

def make_tvt(test_cuts_name, valid_cuts_name, outpath):
    trainset = TaxiDataset('train')
    traindata = trainset.get_data(None, slice(0, trainset.num_examples))
    idsort = traindata[trainset.sources.index('timestamp')].argsort()

    traindata = dict(zip(trainset.sources, (t[idsort] for t in traindata)))

    print >> sys.stderr, 'test cut begin'
    test_cuts = importlib.import_module('.%s' % test_cuts_name, 'data.cuts').cuts
    test = cut_me_baby(traindata, test_cuts)

    print >> sys.stderr, 'valid cut begin'
    valid_cuts = importlib.import_module('.%s' % valid_cuts_name, 'data.cuts').cuts
    valid = cut_me_baby(traindata, valid_cuts, test)

    test_size = len(test)
    valid_size = len(valid)
    train_size = data.train_size - test_size - valid_size

    print ' set   | size    | ratio'
    print ' ----- | ------- | -----'
    print ' train | {:>7d} | {:>5.3f}'.format(train_size, float(train_size)/data.train_size)
    print ' valid | {:>7d} | {:>5.3f}'.format(valid_size, float(valid_size)/data.train_size)
    print ' test  | {:>7d} | {:>5.3f}'.format(test_size , float(test_size )/data.train_size)

    with open(os.path.join(data.path, 'arrival-clusters.pkl'), 'r') as f:
        clusters = cPickle.load(f)

    print >> sys.stderr, 'compiling cluster assignment function'
    latitude = theano.tensor.scalar('latitude')
    longitude = theano.tensor.scalar('longitude')
    coords = theano.tensor.stack(latitude, longitude).dimshuffle('x', 0)
    parent = theano.tensor.argmin(hdist(clusters, coords))
    cluster = theano.function([latitude, longitude], parent)

    print >> sys.stderr, 'preparing hdf5 data'
    hdata = {k: numpy.empty(shape=(data.train_size,), dtype=v) for k, v in all_fields.iteritems()}

    train_i = 0
    valid_i = train_size
    test_i = train_size + valid_size

    print >> sys.stderr, 'write: begin'
    for idtraj in xrange(data.train_size):
        if idtraj%10000==0 and idtraj!=0:
            print >> sys.stderr, 'write: {:d} done'.format(idtraj)
        in_test = idtraj in test
        in_valid = not in_test and idtraj in valid
        in_train = not in_test and not in_valid

        if idtraj in test:
            i = test_i
            test_i += 1
        elif idtraj in valid:
            i = valid_i
            valid_i += 1
        else:
            i = train_i
            train_i += 1

        trajlen = len(traindata['latitude'][idtraj])
        if trajlen == 0:
            hdata['destination_latitude'] = data.train_gps_mean[0]
            hdata['destination_longitude'] =  data.train_gps_mean[1]
        else:
            hdata['destination_latitude'] = traindata['latitude'][idtraj][-1]
            hdata['destination_longitude'] = traindata['longitude'][idtraj][-1]
        hdata['travel_time'] = trajlen

        for field in native_fields:
            val = traindata[field][idtraj]
            if field in ['latitude', 'longitude']:
                if in_test:
                    val = val[:test[idtraj]]
                elif in_valid:
                    val = val[:valid[idtraj]]
            hdata[field][i] = val

        plen = len(hdata['latitude'][i])
        hdata['path_len'][i] = plen
        hdata['cluster'][i] = -1 if plen==0 else cluster(hdata['latitude'][i][0], hdata['longitude'][i][0])

    print >> sys.stderr, 'write: end'

    print >> sys.stderr, 'preparing split array'

    split_array = numpy.empty(len(all_fields)*3, dtype=numpy.dtype([
        ('split', 'a', 64),
        ('source', 'a', 21),
        ('start', numpy.int64, 1),
        ('stop', numpy.int64, 1),
        ('indices', h5py.special_dtype(ref=h5py.Reference)),
        ('available', numpy.bool, 1),
        ('comment', 'a', 1)]))

    flen = len(all_fields)
    for i, field in enumerate(all_fields):
        split_array[i]['split'] = 'train'.encode('utf8')
        split_array[i+flen]['split'] = 'valid'.encode('utf8')
        split_array[i+2*flen]['split'] = 'test'.encode('utf8')
        split_array[i]['start'] = 0
        split_array[i]['stop'] = train_size
        split_array[i+flen]['start'] = train_size
        split_array[i+flen]['stop'] = train_size + valid_size
        split_array[i+2*flen]['start'] = train_size + valid_size
        split_array[i+2*flen]['stop'] = train_size + valid_size + test_size

        for d in [0, flen, 2*flen]:
            split_array[i+d]['source'] = field.encode('utf8')

    split_array[:]['indices'] = None
    split_array[:]['available'] = True
    split_array[:]['comment'] = '.'.encode('utf8')

    print >> sys.stderr, 'writing hdf5 file'
    file = h5py.File(outpath, 'w')
    for k in all_fields.keys():
        file.create_dataset(k, data=hdata[k], maxshape=(data.train_size,))

    file.attrs['split'] = split_array

    file.flush()
    file.close()

if __name__ == '__main__':
    if len(sys.argv) < 3 or len(sys.argv) > 4:
        print >> sys.stderr, 'Usage: %s test_cutfile valid_cutfile [outfile]' % sys.argv[0]
        sys.exit(1)
    outpath = os.path.join(data.path, 'tvt.hdf5') if len(sys.argv) < 4 else sys.argv[3]
    make_tvt(sys.argv[1], sys.argv[2], outpath)