1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
|
import ast, csv
import socket
import fuel
import numpy
import h5py
from enum import Enum
from fuel.datasets import Dataset
from fuel.streams import DataStream
from fuel.iterator import DataIterator
import theano
if socket.gethostname() == "adeb.laptop":
DATA_PATH = "/Users/adeb/data/taxi"
else:
DATA_PATH="/data/lisatmp3/auvolat/taxikaggle"
H5DATA_PATH = '/data/lisatmp3/simonet/taxi/data.hdf5'
porto_center = numpy.array([41.1573, -8.61612], dtype=theano.config.floatX)
data_std = numpy.sqrt(numpy.array([0.00549598, 0.00333233], dtype=theano.config.floatX))
n_clients = 57124
n_train_clients = 57105
n_stands = 63
dataset_size = 1710670
# ---- Read client IDs and create reverse dictionnary
def make_client_ids():
f = h5py.File(H5DATA_PATH, "r")
l = f['unique_origin_call']
r = {}
for i in range(l.shape[0]):
r[l[i]] = i
return r
client_ids = make_client_ids()
def get_client_id(n):
if n in client_ids and client_ids[n] <= n_train_clients:
return client_ids[n]
else:
return 0
class CallType(Enum):
CENTRAL = 0
STAND = 1
STREET = 2
@classmethod
def from_data(cls, val):
if val=='A':
return cls.CENTRAL
elif val=='B':
return cls.STAND
elif val=='C':
return cls.STREET
@classmethod
def to_data(cls, val):
if val==cls.CENTRAL:
return 'A'
elif val==cls.STAND:
return 'B'
elif val==cls.STREET:
return 'C'
class DayType(Enum):
NORMAL = 0
HOLIDAY = 1
HOLIDAY_EVE = 2
@classmethod
def from_data(cls, val):
if val=='A':
return cls.NORMAL
elif val=='B':
return cls.HOLIDAY
elif val=='C':
return cls.HOLIDAY_EVE
@classmethod
def to_data(cls, val):
if val==cls.NORMAL:
return 'A'
elif val==cls.HOLIDAY:
return 'B'
elif val==cls.HOLIDAY_EVE:
return 'C'
class TaxiData(Dataset):
example_iteration_scheme=None
class State:
__slots__ = ('file', 'index', 'reader')
def __init__(self, pathes, columns, has_header=False):
if not isinstance(pathes, list):
pathes=[pathes]
assert len(pathes)>0
self.columns=columns
self.provides_sources = tuple(map(lambda x: x[0], columns))
self.pathes=pathes
self.has_header=has_header
super(TaxiData, self).__init__()
def open(self):
state=self.State()
state.file=open(self.pathes[0])
state.index=0
state.reader=csv.reader(state.file)
if self.has_header:
state.reader.next()
return state
def close(self, state):
state.file.close()
def reset(self, state):
if state.index==0:
state.file.seek(0)
else:
state.index=0
state.file.close()
state.file=open(self.pathes[0])
state.reader=csv.reader(state.file)
return state
def get_data(self, state, request=None):
if request is not None:
raise ValueError
try:
line=state.reader.next()
except (ValueError, StopIteration):
# print state.index
state.file.close()
state.index+=1
if state.index>=len(self.pathes):
raise StopIteration
state.file=open(self.pathes[state.index])
state.reader=csv.reader(state.file)
if self.has_header:
state.reader.next()
return self.get_data(state)
values = []
for _, constructor in self.columns:
values.append(constructor(line))
return tuple(values)
taxi_columns = [
("trip_id", lambda l: l[0]),
("call_type", lambda l: CallType.from_data(l[1])),
("origin_call", lambda l: 0 if l[2] == '' or l[2] == 'NA' else get_client_id(int(l[2]))),
("origin_stand", lambda l: 0 if l[3] == '' or l[3] == 'NA' else int(l[3])),
("taxi_id", lambda l: int(l[4])),
("timestamp", lambda l: int(l[5])),
("day_type", lambda l: DayType.from_data(l[6])),
("missing_data", lambda l: l[7][0] == 'T'),
("polyline", lambda l: map(tuple, ast.literal_eval(l[8]))),
("longitude", lambda l: map(lambda p: p[0], ast.literal_eval(l[8]))),
("latitude", lambda l: map(lambda p: p[1], ast.literal_eval(l[8]))),
]
taxi_columns_valid = taxi_columns + [
("destination_longitude", lambda l: float(l[9])),
("destination_latitude", lambda l: float(l[10])),
("time", lambda l: int(l[11])),
]
train_files=["%s/split/train-%02d.csv" % (DATA_PATH, i) for i in range(100)]
valid_files=["%s/split/valid.csv" % (DATA_PATH,)]
test_file="%s/test.csv" % (DATA_PATH,)
train_data=TaxiData(train_files, taxi_columns)
valid_data = TaxiData(valid_files, taxi_columns_valid)
test_data = TaxiData(test_file, taxi_columns, has_header=True)
def train_it():
return DataIterator(DataStream(train_data))
def test_it():
return DataIterator(DataStream(valid_data))
|