blob: fa2f4c1daeebfc2f4098e5b361a203442b138ad6 (
plain) (
blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
|
import model.simple_mlp as model
import data
n_begin_end_pts = 5 # how many points we consider at the beginning and end of the known trajectory
n_end_pts = 5
n_valid = 1000
dim_embeddings = [
('origin_call', data.n_train_clients+1, 10),
('origin_stand', data.n_stands+1, 10)
]
dim_input = n_begin_end_pts * 2 * 2 + sum(x for (_, _, x) in dim_embeddings)
dim_hidden = [200, 100]
dim_output = 2
learning_rate = 0.0001
momentum = 0.99
batch_size = 32
|