aboutsummaryrefslogtreecommitdiff
path: root/config/joint_simple_mlp_tgtcls_111_cswdtx_bigger_dropout.py
blob: e1bd840ac41dd4e31861e986501f206c9a57e6b3 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
import os
import cPickle

from blocks.initialization import IsotropicGaussian, Constant

import data
from model.joint_simple_mlp_tgtcls import Model, Stream


n_begin_end_pts = 10     # how many points we consider at the beginning and end of the known trajectory

with open(os.path.join(data.path, 'arrival-clusters.pkl')) as f:
    dest_tgtcls = cPickle.load(f)

# generate target classes for time prediction as a Fibonacci sequence
time_tgtcls = [1, 2]
for i in range(21):
    time_tgtcls.append(time_tgtcls[-1] + time_tgtcls[-2])

dim_embeddings = [
    ('origin_call', data.origin_call_size, 15),
    ('origin_stand', data.stands_size, 10),
    ('week_of_year', 52, 10),
    ('day_of_week', 7, 10),
    ('qhour_of_day', 24 * 4, 10),
    ('day_type', 3, 10),
    ('taxi_id', 448, 10),
]

# Common network part
dim_input = n_begin_end_pts * 2 * 2 + sum(x for (_, _, x) in dim_embeddings)
dim_hidden = [5000]

# Destination prediction part
dim_hidden_dest = [1000]
dim_output_dest = dest_tgtcls.shape[0]

# Time prediction part
dim_hidden_time = [500]
dim_output_time = len(time_tgtcls)

# Cost ratio between distance cost and time cost
time_cost_factor = 4

embed_weights_init = IsotropicGaussian(0.01)
mlp_weights_init = IsotropicGaussian(0.1)
mlp_biases_init = Constant(0.01)

apply_dropout = True
dropout_p = 0.5

# use adadelta, so no learning_rate or momentum
batch_size = 200

valid_set = 'cuts/test_times_0'

max_splits = 100