diff options
Diffstat (limited to 'config')
-rw-r--r-- | config/simple_mlp_2_cswdt.py | 25 | ||||
-rw-r--r-- | config/simple_mlp_tgtcls_1_cswdt.py | 5 | ||||
-rw-r--r-- | config/simple_mlp_tgtcls_1_cswdtx.py | 30 |
3 files changed, 58 insertions, 2 deletions
diff --git a/config/simple_mlp_2_cswdt.py b/config/simple_mlp_2_cswdt.py new file mode 100644 index 0000000..05c9450 --- /dev/null +++ b/config/simple_mlp_2_cswdt.py @@ -0,0 +1,25 @@ +import model.simple_mlp as model + +import data + +n_begin_end_pts = 5 # how many points we consider at the beginning and end of the known trajectory +n_end_pts = 5 + +n_valid = 1000 + +dim_embeddings = [ + ('origin_call', data.n_train_clients+1, 10), + ('origin_stand', data.n_stands+1, 10), + ('week_of_year', 52, 10), + ('day_of_week', 7, 10), + ('qhour_of_day', 24 * 4, 10), + ('day_type', 3, 10), +] + +dim_input = n_begin_end_pts * 2 * 2 + sum(x for (_, _, x) in dim_embeddings) +dim_hidden = [200, 100] +dim_output = 2 + +learning_rate = 0.0001 +momentum = 0.99 +batch_size = 32 diff --git a/config/simple_mlp_tgtcls_1_cswdt.py b/config/simple_mlp_tgtcls_1_cswdt.py index 9261635..45bd39e 100644 --- a/config/simple_mlp_tgtcls_1_cswdt.py +++ b/config/simple_mlp_tgtcls_1_cswdt.py @@ -14,9 +14,10 @@ with open(data.DATA_PATH + "/arrival-clusters.pkl") as f: tgtcls = cPickle.load( dim_embeddings = [ ('origin_call', data.n_train_clients+1, 10), ('origin_stand', data.n_stands+1, 10), - ('week_of_year', 53, 10), + ('week_of_year', 52, 10), ('day_of_week', 7, 10), - ('qhour_of_day', 24 * 4, 10) + ('qhour_of_day', 24 * 4, 10), + ('day_type', 3, 10), ] dim_input = n_begin_end_pts * 2 * 2 + sum(x for (_, _, x) in dim_embeddings) diff --git a/config/simple_mlp_tgtcls_1_cswdtx.py b/config/simple_mlp_tgtcls_1_cswdtx.py new file mode 100644 index 0000000..d51ddde --- /dev/null +++ b/config/simple_mlp_tgtcls_1_cswdtx.py @@ -0,0 +1,30 @@ +import cPickle + +import data + +import model.simple_mlp_tgtcls as model + +n_begin_end_pts = 5 # how many points we consider at the beginning and end of the known trajectory +n_end_pts = 5 + +n_valid = 1000 + +with open(data.DATA_PATH + "/arrival-clusters.pkl") as f: tgtcls = cPickle.load(f) + +dim_embeddings = [ + ('origin_call', data.n_train_clients+1, 10), + ('origin_stand', data.n_stands+1, 10), + ('week_of_year', 52, 10), + ('day_of_week', 7, 10), + ('qhour_of_day', 24 * 4, 10), + ('day_type', 3, 10), + ('taxi_id', 448, 10), +] + +dim_input = n_begin_end_pts * 2 * 2 + sum(x for (_, _, x) in dim_embeddings) +dim_hidden = [500] +dim_output = tgtcls.shape[0] + +learning_rate = 0.0001 +momentum = 0.99 +batch_size = 32 |