diff options
Diffstat (limited to 'config/dest_mlp_tgtcls_1_cswdtx_batchshuffle.py')
-rw-r--r-- | config/dest_mlp_tgtcls_1_cswdtx_batchshuffle.py | 40 |
1 files changed, 40 insertions, 0 deletions
diff --git a/config/dest_mlp_tgtcls_1_cswdtx_batchshuffle.py b/config/dest_mlp_tgtcls_1_cswdtx_batchshuffle.py new file mode 100644 index 0000000..a4db33c --- /dev/null +++ b/config/dest_mlp_tgtcls_1_cswdtx_batchshuffle.py @@ -0,0 +1,40 @@ +import os +import cPickle + +from blocks.initialization import IsotropicGaussian, Constant +from blocks.algorithms import Momentum + +import data +from model.dest_mlp_tgtcls import Model, Stream + + +n_begin_end_pts = 5 # how many points we consider at the beginning and end of the known trajectory + +with open(os.path.join(data.path, 'arrival-clusters.pkl')) as f: tgtcls = cPickle.load(f) + +dim_embeddings = [ + ('origin_call', data.origin_call_train_size, 10), + ('origin_stand', data.stands_size, 10), + ('week_of_year', 52, 10), + ('day_of_week', 7, 10), + ('qhour_of_day', 24 * 4, 10), + ('day_type', 3, 10), + ('taxi_id', 448, 10), +] + +dim_input = n_begin_end_pts * 2 * 2 + sum(x for (_, _, x) in dim_embeddings) +dim_hidden = [1000] +dim_output = tgtcls.shape[0] + +embed_weights_init = IsotropicGaussian(0.01) +mlp_weights_init = IsotropicGaussian(0.1) +mlp_biases_init = Constant(0.01) + +step_rule = Momentum(learning_rate=0.01, momentum=0.9) + +batch_size = 200 + +shuffle_batch_size = 5000 + +valid_set = 'cuts/test_times_0' +max_splits = 100 |