aboutsummaryrefslogtreecommitdiff
diff options
context:
space:
mode:
-rw-r--r--config/bidirectional_1.py31
-rw-r--r--config/bidirectional_tgtcls_1.py36
-rw-r--r--model/bidirectional.py173
-rw-r--r--model/bidirectional_direct.py13
-rw-r--r--model/bidirectional_tgtcls.py19
5 files changed, 272 insertions, 0 deletions
diff --git a/config/bidirectional_1.py b/config/bidirectional_1.py
new file mode 100644
index 0000000..8691357
--- /dev/null
+++ b/config/bidirectional_1.py
@@ -0,0 +1,31 @@
+from blocks.initialization import IsotropicGaussian, Constant
+
+import data
+from model.bidirectional_tgtcls import Model, Stream
+
+
+dim_embeddings = [
+ ('origin_call', data.origin_call_train_size, 10),
+ ('origin_stand', data.stands_size, 10),
+ ('week_of_year', 52, 10),
+ ('day_of_week', 7, 10),
+ ('qhour_of_day', 24 * 4, 10),
+ ('taxi_id', 448, 10),
+]
+
+hidden_state_dim = 100
+
+dim_hidden = [500, 500]
+
+embed_weights_init = IsotropicGaussian(0.01)
+fork_weights_init = IsotropicGaussian(0.1)
+fork_biases_init = Constant(0.01)
+rec_weights_init = IsotropicGaussian(0.1)
+mlp_weights_init = IsotropicGaussian(0.1)
+mlp_biases_init = Constant(0.01)
+
+batch_size = 20
+batch_sort_size = 20
+
+valid_set = 'cuts/large_valid'
+max_splits = 100
diff --git a/config/bidirectional_tgtcls_1.py b/config/bidirectional_tgtcls_1.py
new file mode 100644
index 0000000..4c9ed3e
--- /dev/null
+++ b/config/bidirectional_tgtcls_1.py
@@ -0,0 +1,36 @@
+import os
+import cPickle
+
+from blocks.initialization import IsotropicGaussian, Constant
+
+import data
+from model.bidirectional_tgtcls import Model, Stream
+
+
+with open(os.path.join(data.path, 'arrival-clusters.pkl')) as f: tgtcls = cPickle.load(f)
+
+dim_embeddings = [
+ ('origin_call', data.origin_call_train_size, 10),
+ ('origin_stand', data.stands_size, 10),
+ ('week_of_year', 52, 10),
+ ('day_of_week', 7, 10),
+ ('qhour_of_day', 24 * 4, 10),
+ ('taxi_id', 448, 10),
+]
+
+hidden_state_dim = 100
+
+dim_hidden = [500, 500]
+
+embed_weights_init = IsotropicGaussian(0.01)
+fork_weights_init = IsotropicGaussian(0.1)
+fork_biases_init = Constant(0.01)
+rec_weights_init = IsotropicGaussian(0.1)
+mlp_weights_init = IsotropicGaussian(0.1)
+mlp_biases_init = Constant(0.01)
+
+batch_size = 20
+batch_sort_size = 20
+
+valid_set = 'cuts/large_valid'
+max_splits = 100
diff --git a/model/bidirectional.py b/model/bidirectional.py
new file mode 100644
index 0000000..1d697d6
--- /dev/null
+++ b/model/bidirectional.py
@@ -0,0 +1,173 @@
+from theano import tensor
+
+from blocks.bricks import application, MLP, Initializable, Linear, Rectifier, Identity
+from blocks.bricks.base import lazy
+from blocks.bricks.recurrent import Bidirectional, LSTM
+from blocks.utils import shared_floatx_zeros
+from blocks.bricks.parallel import Fork
+
+from fuel.transformers import Batch, Padding, Mapping, SortMapping, Unpack, MultiProcessing
+from fuel.streams import DataStream
+from fuel.schemes import ConstantScheme, ShuffledExampleScheme
+
+from model import ContextEmbedder
+import data
+from data import transformers
+from data.hdf5 import TaxiDataset, TaxiStream
+import error
+
+
+class BidiRNN(Initializable):
+ @lazy()
+ def __init__(self, config, output_dim=2, **kwargs):
+ super(BidiRNN, self).__init__(**kwargs)
+ self.config = config
+
+ self.context_embedder = ContextEmbedder(config)
+
+ self.rec = Bidirectional(LSTM(dim = config.hidden_state_dim, name = 'recurrent'))
+
+ self.fork = Fork([name for name in self.rec.prototype.apply.sequences if name!='mask'], prototype=Linear())
+
+ rto_in = config.hidden_state_dim * 2 + sum(x[2] for x in config.dim_embeddings)
+ self.rec_to_output = MLP(activations=[Rectifier() for _ in config.dim_hidden] + [Identity()], dims=[rto_in] + config.dim_hidden + [output_dim])
+
+ self.sequences = ['latitude', 'latitude_mask', 'longitude']
+ self.inputs = self.sequences + self.context_embedder.inputs
+
+ self.children = [ self.context_embedder, self.fork, self.rec, self.rec_to_output ]
+
+ def _push_allocation_config(self):
+ self.fork.input_dim = 2
+ self.fork.output_dims = [ self.rec.children[0].get_dim(name) for name in self.fork.output_names ]
+ self.fork.weights_init = self.config.fork_weights_init
+ self.fork.biases_init = self.config.fork_biases_init
+ self.rec.weights_init = self.config.rec_weights_init
+ self.rec_to_output.weights_init = self.config.mlp_weights_init
+ self.rec_to_output.biases_init = self.config.mlp_biases_init
+
+ def process_outputs(self, outputs):
+ return outputs
+
+ @application(outputs=['destination'])
+ def predict(self, latitude, longitude, latitude_mask, **kwargs):
+ latitude = (latitude.T - data.train_gps_mean[0]) / data.train_gps_std[0]
+ longitude = (longitude.T - data.train_gps_mean[1]) / data.train_gps_std[1]
+ latitude_mask = latitude_mask.T
+
+ latitude = tensor.shape_padright(latitude)
+ longitude = tensor.shape_padright(longitude)
+ rec_in = tensor.concatenate((latitude, longitude), axis=2)
+
+ path = self.rec.apply(self.fork.apply(rec_in), mask=latitude_mask)[0]
+ path_representation = (path[0][:, -self.config.hidden_state_dim:],
+ path[-1][:, :self.config.hidden_state_dim])
+
+ embeddings = tuple(self.context_embedder.apply(**{k: kwargs[k] for k in self.context_embedder.inputs }))
+
+ inputs = tensor.concatenate(path_representation + embeddings, axis=1)
+ outputs = self.rec_to_output.apply(inputs)
+
+ return self.process_outputs(outputs)
+
+ @predict.property('inputs')
+ def predict_inputs(self):
+ return self.inputs
+
+ @application(outputs=['cost'])
+ def cost(self, **kwargs):
+ y_hat = self.predict(**kwargs)
+ y = tensor.concatenate((kwargs['destination_latitude'][:, None],
+ kwargs['destination_longitude'][:, None]), axis=1)
+
+ return error.erdist(y_hat, y).mean()
+
+ @cost.property('inputs')
+ def cost_inputs(self):
+ return self.inputs + ['destination_latitude', 'destination_longitude']
+
+class UniformGenerator(object):
+ def __init__(self):
+ self.rng = numpy.random.RandomState(123)
+ def __call__(self, *args):
+ return float(self.rng.uniform())
+
+class Stream(object):
+ def __init__(self, config):
+ self.config = config
+
+ def train(self, req_vars):
+ valid = TaxiDataset(self.config.valid_set, 'valid.hdf5', sources=('trip_id',))
+ valid_trips_ids = valid.get_data(None, slice(0, valid.num_examples))[0]
+
+ stream = TaxiDataset('train')
+
+ if hasattr(self.config, 'use_cuts_for_training') and self.config.use_cuts_for_training:
+ stream = DataStream(stream, iteration_scheme=TaxiTimeCutScheme())
+ else:
+ stream = DataStream(stream, iteration_scheme=ShuffledExampleScheme(stream.num_examples))
+
+ stream = transformers.TaxiExcludeTrips(stream, valid_trips_ids)
+ stream = transformers.TaxiGenerateSplits(stream, max_splits=self.config.max_splits)
+
+ if hasattr(self.config, 'shuffle_batch_size'):
+ stream = transformers.Batch(stream, iteration_scheme=ConstantScheme(self.config.shuffle_batch_size))
+ stream = Mapping(stream, SortMapping(key=UniformGenerator()))
+ stream = Unpack(stream)
+
+ stream = transformers.taxi_add_datetime(stream)
+ stream = transformers.add_destination(stream)
+ stream = transformers.Select(stream, tuple(v for v in req_vars if not v.endswith('_mask')))
+
+ stream = transformers.balanced_batch(stream, key='latitude', batch_size=self.config.batch_size, batch_sort_size=self.config.batch_sort_size)
+ stream = Padding(stream, mask_sources=['latitude', 'longitude'])
+ stream = transformers.Select(stream, req_vars)
+
+ stream = MultiProcessing(stream)
+
+ return stream
+
+ def valid(self, req_vars):
+ stream = TaxiStream(self.config.valid_set, 'valid.hdf5')
+
+ stream = transformers.taxi_add_datetime(stream)
+ stream = transformers.add_destination(stream)
+ stream = transformers.Select(stream, tuple(v for v in req_vars if not v.endswith('_mask')))
+
+ stream = Batch(stream, iteration_scheme=ConstantScheme(self.config.batch_size))
+ stream = Padding(stream, mask_sources=['latitude', 'longitude'])
+ stream = transformers.Select(stream, req_vars)
+ return stream
+
+ def test(self, req_vars):
+ stream = TaxiStream('test')
+
+ stream = transformers.taxi_add_datetime(stream)
+ stream = transformers.taxi_remove_test_only_clients(stream)
+
+ stream = transformers.Select(stream, tuple(v for v in req_vars if not v.endswith('_mask')))
+
+ stream = Batch(stream, iteration_scheme=ConstantScheme(self.config.batch_size))
+ stream = Padding(stream, mask_sources=['latitude', 'longitude'])
+ stream = transformers.Select(stream, req_vars)
+ return stream
+
+ def inputs(self):
+ return {'call_type': tensor.bvector('call_type'),
+ 'origin_call': tensor.ivector('origin_call'),
+ 'origin_stand': tensor.bvector('origin_stand'),
+ 'taxi_id': tensor.wvector('taxi_id'),
+ 'timestamp': tensor.ivector('timestamp'),
+ 'day_type': tensor.bvector('day_type'),
+ 'missing_data': tensor.bvector('missing_data'),
+ 'latitude': tensor.matrix('latitude'),
+ 'longitude': tensor.matrix('longitude'),
+ 'latitude_mask': tensor.matrix('latitude_mask'),
+ 'longitude_mask': tensor.matrix('longitude_mask'),
+ 'destination_latitude': tensor.vector('destination_latitude'),
+ 'destination_longitude': tensor.vector('destination_longitude'),
+ 'travel_time': tensor.ivector('travel_time'),
+ 'input_time': tensor.ivector('input_time'),
+ 'week_of_year': tensor.bvector('week_of_year'),
+ 'day_of_week': tensor.bvector('day_of_week'),
+ 'qhour_of_day': tensor.bvector('qhour_of_day')}
diff --git a/model/bidirectional_direct.py b/model/bidirectional_direct.py
new file mode 100644
index 0000000..81b33bd
--- /dev/null
+++ b/model/bidirectional_direct.py
@@ -0,0 +1,13 @@
+from blocks.bricks.base import lazy
+
+from model.bidirectional import BidiRNN, Stream
+import data
+
+
+class Model(BidiRNN):
+ @lazy()
+ def __init__(self, config, **kwargs):
+ super(Model, self).__init__(config, **kwargs)
+
+ def process_outputs(self, outputs):
+ return (outputs * data.train_gps_std) + data.train_gps_mean
diff --git a/model/bidirectional_tgtcls.py b/model/bidirectional_tgtcls.py
new file mode 100644
index 0000000..36120f7
--- /dev/null
+++ b/model/bidirectional_tgtcls.py
@@ -0,0 +1,19 @@
+import numpy
+import theano
+from theano import tensor
+from blocks.bricks.base import lazy
+from blocks.bricks import Softmax
+
+from model.bidirectional import BidiRNN, Stream
+
+
+class Model(BidiRNN):
+ @lazy()
+ def __init__(self, config, **kwargs):
+ super(Model, self).__init__(config, output_dim=config.tgtcls.shape[0], **kwargs)
+ self.classes = theano.shared(numpy.array(config.tgtcls, dtype=theano.config.floatX), name='classes')
+ self.softmax = Softmax()
+ self.children.append(self.softmax)
+
+ def process_outputs(self, outputs):
+ return tensor.dot(self.softmax.apply(outputs), self.classes)