diff options
-rw-r--r-- | model/memory_network.py | 49 | ||||
-rw-r--r-- | model/memory_network_bidir.py | 70 | ||||
-rw-r--r-- | model/memory_network_mlp.py | 133 |
3 files changed, 107 insertions, 145 deletions
diff --git a/model/memory_network.py b/model/memory_network.py index e7ba51c..84a8edf 100644 --- a/model/memory_network.py +++ b/model/memory_network.py @@ -14,11 +14,58 @@ import error from model import ContextEmbedder class MemoryNetworkBase(Initializable): - def __init__(self, config, **kwargs): + def __init__(self, config, prefix_encoder, candidate_encoder, **kwargs): super(MemoryNetworkBase, self).__init__(**kwargs) + self.prefix_encoder = prefix_encoder + self.candidate_encoder = candidate_encoder self.config = config + self.softmax = Softmax() + self.children = [ self.softmax, prefix_encoder, candidate_encoder ] + + self.inputs = self.prefix_encoder.apply.inputs \ + + ['candidate_%s'%x for x in self.candidate_encoder.apply.inputs] + + def candidate_destination(**kwargs): + return tensor.concatenate( + (tensor.shape_padright(kwargs['candidate_last_k_latitude'][:,-1]), + tensor.shape_padright(kwargs['candidate_last_k_longitude'][:,-1])), + axis=1) + + @application(outputs=['cost']) + def cost(self, **kwargs): + y_hat = self.predict(**kwargs) + y = tensor.concatenate((kwargs['destination_latitude'][:, None], + kwargs['destination_longitude'][:, None]), axis=1) + + return error.erdist(y_hat, y).mean() + + @application(outputs=['destination']) + def predict(self, **kwargs): + prefix_representation = self.prefix_encoder.apply( + { x: kwargs[x] for x in self.prefix_encoder.apply.inputs }) + candidate_representatin = self.candidate_encoder.apply( + { x: kwargs['candidate_'+x] for x in self.candidate_encoder.apply.inputs }) + + if self.config.normalize_representation: + prefix_representation = prefix_representation \ + / tensor.sqrt((prefix_representation ** 2).sum(axis=1, keepdims=True)) + candidate_representation = candidate_representation \ + / tensor.sqrt((candidate_representation ** 2).sum(axis=1, keepdims=True)) + + similarity_score = tensor.dot(prefix_representation, candidate_representation.T) + similarity = self.softmax.apply(similarity_score) + + return tensor.dot(similarity, self.candidate_destination(**kwargs)) + + @predict.property('inputs') + def predict_inputs(self): + return self.inputs + + @cost.property('inputs') + def cost_inputs(self): + return self.inputs + ['destination_latitude', 'destination_longitude'] class StreamBase(object): def __init__(self, config): diff --git a/model/memory_network_bidir.py b/model/memory_network_bidir.py index 9dad091..cc99312 100644 --- a/model/memory_network_bidir.py +++ b/model/memory_network_bidir.py @@ -75,69 +75,19 @@ class RecurrentEncoder(Initializable): class Model(MemoryNetworkBase): def __init__(self, config, **kwargs): - super(Model, self).__init__(config, **kwargs) # Build prefix encoder : recurrent then MLP - self.prefix_encoder = RecurrentEncoder(self.config.prefix_encoder, - self.config.representation_size, - self.config.representation_activation(), - name='prefix_encoder') + prefix_encoder = RecurrentEncoder(self.config.prefix_encoder, + self.config.representation_size, + self.config.representation_activation(), + name='prefix_encoder') # Build candidate encoder - self.candidate_encoder = RecurrentEncoder(self.config.candidate_encoder, - self.config.representation_size, - self.config.representation_activation(), - name='candidate_encoder') + candidate_encoder = RecurrentEncoder(self.config.candidate_encoder, + self.config.representation_size, + self.config.representation_activation(), + name='candidate_encoder') - # Rest of the stuff - self.softmax = Softmax() + # And... that's it! + super(Model, self).__init__(config, prefix_encoder, candidate_encoder, **kwargs) - self.inputs = self.prefix_encoder.inputs \ - + ['candidate_'+k for k in self.candidate_encoder.inputs] - - self.children = [ self.prefix_encoder, - self.candidate_encoder, - self.softmax ] - - - @application(outputs=['destination']) - def predict(self, **kwargs): - prefix_representation = self.prefix_encoder.apply( - **{ name: kwargs[name] for name in self.prefix_encoder.inputs }) - - candidate_representation = self.prefix_encoder.apply( - **{ name: kwargs['candidate_'+name] for name in self.candidate_encoder.inputs }) - - if self.config.normalize_representation: - candidate_representation = candidate_representation \ - / tensor.sqrt((candidate_representation ** 2).sum(axis=1, keepdims=True)) - - similarity_score = tensor.dot(prefix_representation, candidate_representation.T) - similarity = self.softmax.apply(similarity_score) - - candidate_mask = kwargs['candidate_latitude_mask'] - candidate_last = tensor.cast(candidate_mask.sum(axis=1) - 1, 'int64') - candidate_destination = tensor.concatenate( - (kwargs['candidate_latitude'][tensor.arange(candidate_mask.shape[0]), candidate_last] - [:, None], - kwargs['candidate_longitude'][tensor.arange(candidate_mask.shape[0]), candidate_last] - [:, None]), - axis=1) - - return tensor.dot(similarity, candidate_destination) - - @predict.property('inputs') - def predict_inputs(self): - return self.inputs - - @application(outputs=['cost']) - def cost(self, **kwargs): - y_hat = self.predict(**kwargs) - y = tensor.concatenate((kwargs['destination_latitude'][:, None], - kwargs['destination_longitude'][:, None]), axis=1) - - return error.erdist(y_hat, y).mean() - - @cost.property('inputs') - def cost_inputs(self): - return self.inputs + ['destination_latitude', 'destination_longitude'] diff --git a/model/memory_network_mlp.py b/model/memory_network_mlp.py index cb8de2a..de07e60 100644 --- a/model/memory_network_mlp.py +++ b/model/memory_network_mlp.py @@ -16,91 +16,56 @@ from model import ContextEmbedder from memory_network import StreamSimple as Stream from memory_network import MemoryNetworkBase +class MLPEncoder(Initializable): + def __init__(self, config, output_dim, activation, **kwargs): + super(RecurrentEncoder, self).__init__(**kwargs) + + self.config = config + self.context_embedder = ContextEmbedder(self.config) + + self.encoder_mlp = MLP(activations=[Rectifier() for _ in config.prefix_encoder.dim_hidden] + + [config.representation_activation()], + dims=[config.prefix_encoder.dim_input] + + config.prefix_encoder.dim_hidden + + [config.representation_size], + name='prefix_encoder') + + self.extremities = {'%s_k_%s' % (side, ['latitude', 'longitude'][axis]): axis + for side in ['first', 'last'] for axis in [0, 1]} -class Model(MemoryNetworkBase): - def __init__(self, **kwargs): - super(Model, self).__init__(**kwargs) - - self.prefix_encoder = MLP(activations=[Rectifier() for _ in config.prefix_encoder.dim_hidden] - + [config.representation_activation()], - dims=[config.prefix_encoder.dim_input] - + config.prefix_encoder.dim_hidden - + [config.representation_size], - name='prefix_encoder') - - self.candidate_encoder = MLP( - activations=[Rectifier() for _ in config.candidate_encoder.dim_hidden] - + [config.representation_activation()], - dims=[config.candidate_encoder.dim_input] - + config.candidate_encoder.dim_hidden - + [config.representation_size], - name='candidate_encoder') - self.softmax = Softmax() - - self.prefix_extremities = {'%s_k_%s' % (side, ['latitude', 'longitude'][axis]): axis - for side in ['first', 'last'] for axis in [0, 1]} - self.candidate_extremities = {'candidate_%s_k_%s' % (side, axname): axis - for side in ['first', 'last'] - for axis, axname in enumerate(['latitude', 'longitude'])} - - self.inputs = self.context_embedder.inputs \ - + ['candidate_%s'%k for k in self.context_embedder.inputs] \ - + self.prefix_extremities.keys() + self.candidate_extremities.keys() self.children = [ self.context_embedder, - self.prefix_encoder, - self.candidate_encoder, - self.softmax ] + self.encoder_mlp ] def _push_initialization_config(self): - for (mlp, config) in [[self.prefix_encoder, self.config.prefix_encoder], - [self.candidate_encoder, self.config.candidate_encoder]]: - mlp.weights_init = config.weights_init - mlp.biases_init = config.biases_init - - @application(outputs=['destination']) - def predict(self, **kwargs): - prefix_embeddings = tuple(self.context_embedder.apply( - **{k: kwargs[k] for k in self.context_embedder.inputs })) - prefix_extremities = tuple((kwargs[k] - data.train_gps_mean[v]) / data.train_gps_std[v] - for k, v in self.prefix_extremities.items()) - prefix_inputs = tensor.concatenate(prefix_extremities + prefix_embeddings, axis=1) - prefix_representation = self.prefix_encoder.apply(prefix_inputs) - if self.config.normalize_representation: - prefix_representation = prefix_representation \ - / tensor.sqrt((prefix_representation ** 2).sum(axis=1, keepdims=True)) - - candidate_embeddings = tuple(self.context_embedder.apply(**{k: kwargs['candidate_%s'%k] - for k in self.context_embedder.inputs })) - candidate_extremities = tuple((kwargs[k] - data.train_gps_mean[v]) / data.train_gps_std[v] - for k, v in self.candidate_extremities.items()) - candidate_inputs = tensor.concatenate(candidate_extremities + candidate_embeddings, axis=1) - candidate_representation = self.candidate_encoder.apply(candidate_inputs) - if self.config.normalize_representation: - candidate_representation = candidate_representation \ - / tensor.sqrt((candidate_representation ** 2).sum(axis=1, keepdims=True)) - - similarity_score = tensor.dot(prefix_representation, candidate_representation.T) - similarity = self.softmax.apply(similarity_score) - - candidate_destination = tensor.concatenate( - (tensor.shape_padright(kwargs['candidate_last_k_latitude'][:,-1]), - tensor.shape_padright(kwargs['candidate_last_k_longitude'][:,-1])), - axis=1) - - return tensor.dot(similarity, candidate_destination) - - @predict.property('inputs') - def predict_inputs(self): - return self.inputs - - @application(outputs=['cost']) - def cost(self, **kwargs): - y_hat = self.predict(**kwargs) - y = tensor.concatenate((kwargs['destination_latitude'][:, None], - kwargs['destination_longitude'][:, None]), axis=1) - - return error.erdist(y_hat, y).mean() - - @cost.property('inputs') - def cost_inputs(self): - return self.inputs + ['destination_latitude', 'destination_longitude'] + for brick in [self.contex_encoder, self.encoder_mlp]: + brick.weights_init = self.config.weights_init + brick.biases_init = self.config.biases_init + + @application + def apply(self, **kwargs): + embeddings = tuple(self.context_embedder.apply( + **{k: kwargs[k] for k in self.context_embedder.inputs })) + extremities = tuple((kwargs[k] - data.train_gps_mean[v]) / data.train_gps_std[v] + for k, v in self.prefix_extremities.items()) + inputs = tensor.concatenate(extremities + embeddings, axis=1) + + return self.encoder_mlp.apply(inputs) + + @apply.property('inputs') + def apply_inputs(self): + return self.context_embedder.inputs + self.extremities.keys() + + +class Model(MemoryNetworkBase): + def __init__(self, config, **kwargs): + prefix_encoder = MLPEncoder(config.prefix_encoder, + config.representation_size, + config.representation_activation()) + + candidate_encoer = MLPEncoder(config.candidate_encoder, + config.representation_size, + config.representation_activation()) + + super(Model, self).__init__(config, prefix_encoder, candidate_encoder, **kwargs) + + |