aboutsummaryrefslogtreecommitdiff
path: root/model/time_simple_mlp_tgtcls.py
diff options
context:
space:
mode:
authorAlex Auvolat <alex.auvolat@ens.fr>2015-05-07 13:16:23 -0400
committerAlex Auvolat <alex.auvolat@ens.fr>2015-05-07 13:16:23 -0400
commit1ffd1fc355f6fddcb6cd3d93c0df58513d064472 (patch)
tree8fc93f32c3f94644338093ac4a8a66d8d316d5a5 /model/time_simple_mlp_tgtcls.py
parent1ff071800fc876eb6f2c25fe0eb1f7dc64efe0be (diff)
downloadtaxi-1ffd1fc355f6fddcb6cd3d93c0df58513d064472.tar.gz
taxi-1ffd1fc355f6fddcb6cd3d93c0df58513d064472.zip
Add target class based model for time prediction (seems to work)
Diffstat (limited to 'model/time_simple_mlp_tgtcls.py')
-rw-r--r--model/time_simple_mlp_tgtcls.py67
1 files changed, 67 insertions, 0 deletions
diff --git a/model/time_simple_mlp_tgtcls.py b/model/time_simple_mlp_tgtcls.py
new file mode 100644
index 0000000..1f1eab7
--- /dev/null
+++ b/model/time_simple_mlp_tgtcls.py
@@ -0,0 +1,67 @@
+from blocks.bricks import MLP, Rectifier, Linear, Sigmoid, Identity, Softmax
+from blocks.bricks.lookup import LookupTable
+
+import numpy
+import theano
+from theano import tensor
+
+import data
+import error
+
+class Model(object):
+ def __init__(self, config):
+ # The input and the targets
+ x_firstk_latitude = (tensor.matrix('first_k_latitude') - data.train_gps_mean[0]) / data.train_gps_std[0]
+ x_firstk_longitude = (tensor.matrix('first_k_longitude') - data.train_gps_mean[1]) / data.train_gps_std[1]
+
+ x_lastk_latitude = (tensor.matrix('last_k_latitude') - data.train_gps_mean[0]) / data.train_gps_std[0]
+ x_lastk_longitude = (tensor.matrix('last_k_longitude') - data.train_gps_mean[1]) / data.train_gps_std[1]
+
+ input_list = [x_firstk_latitude, x_firstk_longitude, x_lastk_latitude, x_lastk_longitude]
+ embed_tables = []
+
+ self.require_inputs = ['first_k_latitude', 'first_k_longitude', 'last_k_latitude', 'last_k_longitude']
+
+ for (varname, num, dim) in config.dim_embeddings:
+ self.require_inputs.append(varname)
+ vardata = tensor.lvector(varname)
+ tbl = LookupTable(length=num, dim=dim, name='%s_lookup'%varname)
+ embed_tables.append(tbl)
+ input_list.append(tbl.apply(vardata))
+
+ y = tensor.lvector('travel_time')
+
+ # Define the model
+ mlp = MLP(activations=[Rectifier() for _ in config.dim_hidden] + [Softmax()],
+ dims=[config.dim_input] + config.dim_hidden + [config.dim_output])
+ classes = theano.shared(numpy.array(config.tgtcls, dtype=theano.config.floatX), name='classes')
+
+ # Create the Theano variables
+ inputs = tensor.concatenate(input_list, axis=1)
+ # inputs = theano.printing.Print("inputs")(inputs)
+ cls_probas = mlp.apply(inputs)
+ outputs = tensor.dot(cls_probas, classes)
+
+ # outputs = theano.printing.Print("outputs")(outputs)
+ # y = theano.printing.Print("y")(y)
+
+ outputs.name = 'outputs'
+
+ # Calculate the cost
+ cost = error.rmsle(outputs.flatten(), y.flatten())
+ cost.name = 'cost'
+
+ # Initialization
+ for tbl in embed_tables:
+ tbl.weights_init = config.embed_weights_init
+ mlp.weights_init = config.mlp_weights_init
+ mlp.biases_init = config.mlp_biases_init
+
+ for tbl in embed_tables:
+ tbl.initialize()
+ mlp.initialize()
+
+ self.cost = cost
+ self.monitor = [cost]
+ self.outputs = outputs
+ self.pred_vars = ['travel_time']