diff options
author | Alex Auvolat <alex.auvolat@ens.fr> | 2015-05-05 14:15:21 -0400 |
---|---|---|
committer | Alex Auvolat <alex.auvolat@ens.fr> | 2015-05-05 14:15:21 -0400 |
commit | 54613c1f9cf510ca7a71d6619418f2247515aec6 (patch) | |
tree | bed9a5a11ef5b7feecee44095a29400e32f76b05 /model/time_simple_mlp.py | |
parent | 712035b88be1816d3fbd58ce69ae6464767c780e (diff) | |
download | taxi-54613c1f9cf510ca7a71d6619418f2247515aec6.tar.gz taxi-54613c1f9cf510ca7a71d6619418f2247515aec6.zip |
Add models for time predictioAdd models for time prediction
Diffstat (limited to 'model/time_simple_mlp.py')
-rw-r--r-- | model/time_simple_mlp.py | 65 |
1 files changed, 65 insertions, 0 deletions
diff --git a/model/time_simple_mlp.py b/model/time_simple_mlp.py new file mode 100644 index 0000000..1568ed3 --- /dev/null +++ b/model/time_simple_mlp.py @@ -0,0 +1,65 @@ +from blocks.bricks import MLP, Rectifier, Linear, Sigmoid, Identity +from blocks.bricks.lookup import LookupTable + +from blocks.initialization import IsotropicGaussian, Constant + +from theano import tensor + +import data +import error + +class Model(object): + def __init__(self, config): + # The input and the targets + x_firstk_latitude = (tensor.matrix('first_k_latitude') - data.porto_center[0]) / data.data_std[0] + x_firstk_longitude = (tensor.matrix('first_k_longitude') - data.porto_center[1]) / data.data_std[1] + + x_lastk_latitude = (tensor.matrix('last_k_latitude') - data.porto_center[0]) / data.data_std[0] + x_lastk_longitude = (tensor.matrix('last_k_longitude') - data.porto_center[1]) / data.data_std[1] + + input_list = [x_firstk_latitude, x_firstk_longitude, x_lastk_latitude, x_lastk_longitude] + embed_tables = [] + + self.require_inputs = ['first_k_latitude', 'first_k_longitude', 'last_k_latitude', 'last_k_longitude'] + + for (varname, num, dim) in config.dim_embeddings: + self.require_inputs.append(varname) + vardata = tensor.lvector(varname) + tbl = LookupTable(length=num, dim=dim, name='%s_lookup'%varname) + embed_tables.append(tbl) + input_list.append(tbl.apply(vardata)) + + y = tensor.lvector('time') + + # Define the model + mlp = MLP(activations=[Rectifier() for _ in config.dim_hidden] + [Identity()], + dims=[config.dim_input] + config.dim_hidden + [config.dim_output]) + + # Create the Theano variables + inputs = tensor.concatenate(input_list, axis=1) + # inputs = theano.printing.Print("inputs")(inputs) + outputs = tensor.exp(mlp.apply(inputs) + 2) + + # outputs = theano.printing.Print("outputs")(outputs) + # y = theano.printing.Print("y")(y) + + outputs.name = 'outputs' + + # Calculate the cost + cost = error.rmsle(outputs.flatten(), y.flatten()) + cost.name = 'cost' + + # Initialization + for tbl in embed_tables: + tbl.weights_init = IsotropicGaussian(0.001) + mlp.weights_init = IsotropicGaussian(0.01) + mlp.biases_init = Constant(0.001) + + for tbl in embed_tables: + tbl.initialize() + mlp.initialize() + + self.cost = cost + self.monitor = [cost] + self.outputs = outputs + self.pred_vars = ['time'] |