aboutsummaryrefslogtreecommitdiff
path: root/model/time_simple_mlp.py
diff options
context:
space:
mode:
authorAlex Auvolat <alex.auvolat@ens.fr>2015-05-06 10:12:17 -0400
committerAlex Auvolat <alex.auvolat@ens.fr>2015-05-06 10:12:17 -0400
commit35b4503ddd148b0c937468891dd0a7e9ff1c79f4 (patch)
tree92db398bce1f557ca9cb988dcf64a700ad249e47 /model/time_simple_mlp.py
parent60aa0d3fdd42d7489cc69acbb54c59d7c249ea34 (diff)
downloadtaxi-35b4503ddd148b0c937468891dd0a7e9ff1c79f4.tar.gz
taxi-35b4503ddd148b0c937468891dd0a7e9ff1c79f4.zip
Move weights init to config files ; fix s/time/travel_time
Diffstat (limited to 'model/time_simple_mlp.py')
-rw-r--r--model/time_simple_mlp.py22
1 files changed, 10 insertions, 12 deletions
diff --git a/model/time_simple_mlp.py b/model/time_simple_mlp.py
index 1568ed3..9e1b10a 100644
--- a/model/time_simple_mlp.py
+++ b/model/time_simple_mlp.py
@@ -1,8 +1,6 @@
from blocks.bricks import MLP, Rectifier, Linear, Sigmoid, Identity
from blocks.bricks.lookup import LookupTable
-from blocks.initialization import IsotropicGaussian, Constant
-
from theano import tensor
import data
@@ -11,11 +9,11 @@ import error
class Model(object):
def __init__(self, config):
# The input and the targets
- x_firstk_latitude = (tensor.matrix('first_k_latitude') - data.porto_center[0]) / data.data_std[0]
- x_firstk_longitude = (tensor.matrix('first_k_longitude') - data.porto_center[1]) / data.data_std[1]
+ x_firstk_latitude = (tensor.matrix('first_k_latitude') - data.train_gps_mean[0]) / data.train_gps_std[0]
+ x_firstk_longitude = (tensor.matrix('first_k_longitude') - data.train_gps_mean[1]) / data.train_gps_std[1]
- x_lastk_latitude = (tensor.matrix('last_k_latitude') - data.porto_center[0]) / data.data_std[0]
- x_lastk_longitude = (tensor.matrix('last_k_longitude') - data.porto_center[1]) / data.data_std[1]
+ x_lastk_latitude = (tensor.matrix('last_k_latitude') - data.train_gps_mean[0]) / data.train_gps_std[0]
+ x_lastk_longitude = (tensor.matrix('last_k_longitude') - data.train_gps_mean[1]) / data.train_gps_std[1]
input_list = [x_firstk_latitude, x_firstk_longitude, x_lastk_latitude, x_lastk_longitude]
embed_tables = []
@@ -29,7 +27,7 @@ class Model(object):
embed_tables.append(tbl)
input_list.append(tbl.apply(vardata))
- y = tensor.lvector('time')
+ y = tensor.lvector('travel_time')
# Define the model
mlp = MLP(activations=[Rectifier() for _ in config.dim_hidden] + [Identity()],
@@ -38,7 +36,7 @@ class Model(object):
# Create the Theano variables
inputs = tensor.concatenate(input_list, axis=1)
# inputs = theano.printing.Print("inputs")(inputs)
- outputs = tensor.exp(mlp.apply(inputs) + 2)
+ outputs = config.exp_base ** mlp.apply(inputs)
# outputs = theano.printing.Print("outputs")(outputs)
# y = theano.printing.Print("y")(y)
@@ -51,9 +49,9 @@ class Model(object):
# Initialization
for tbl in embed_tables:
- tbl.weights_init = IsotropicGaussian(0.001)
- mlp.weights_init = IsotropicGaussian(0.01)
- mlp.biases_init = Constant(0.001)
+ tbl.weights_init = config.embed_weights_init
+ mlp.weights_init = config.mlp_weights_init
+ mlp.biases_init = config.mlp_biases_init
for tbl in embed_tables:
tbl.initialize()
@@ -62,4 +60,4 @@ class Model(object):
self.cost = cost
self.monitor = [cost]
self.outputs = outputs
- self.pred_vars = ['time']
+ self.pred_vars = ['travel_time']