aboutsummaryrefslogtreecommitdiff
path: root/model/simple_mlp_tgtcls.py
diff options
context:
space:
mode:
authorAlex Auvolat <alex.auvolat@ens.fr>2015-05-04 17:13:08 -0400
committerAlex Auvolat <alex.auvolat@ens.fr>2015-05-04 17:13:08 -0400
commit5f42c01231ccec377196472b6f4682b6afeb878d (patch)
tree8e0212399a951a57738574084234e7c75b4fe590 /model/simple_mlp_tgtcls.py
parentc912ef9424be973b11b4c7b7dbb2d32a8f3a9ab9 (diff)
downloadtaxi-5f42c01231ccec377196472b6f4682b6afeb878d.tar.gz
taxi-5f42c01231ccec377196472b6f4682b6afeb878d.zip
Add model with predefined target classes
Diffstat (limited to 'model/simple_mlp_tgtcls.py')
-rw-r--r--model/simple_mlp_tgtcls.py74
1 files changed, 74 insertions, 0 deletions
diff --git a/model/simple_mlp_tgtcls.py b/model/simple_mlp_tgtcls.py
new file mode 100644
index 0000000..99a459a
--- /dev/null
+++ b/model/simple_mlp_tgtcls.py
@@ -0,0 +1,74 @@
+import numpy
+
+import theano
+from theano import tensor
+
+from blocks.bricks import MLP, Rectifier, Linear, Sigmoid, Identity, Softmax
+from blocks.bricks.lookup import LookupTable
+
+from blocks.initialization import IsotropicGaussian, Constant
+
+import data
+import hdist
+
+class Model(object):
+ def __init__(self, config):
+ # The input and the targets
+ x_firstk_latitude = (tensor.matrix('first_k_latitude') - data.porto_center[0]) / data.data_std[0]
+ x_firstk_longitude = (tensor.matrix('first_k_longitude') - data.porto_center[1]) / data.data_std[1]
+
+ x_lastk_latitude = (tensor.matrix('last_k_latitude') - data.porto_center[0]) / data.data_std[0]
+ x_lastk_longitude = (tensor.matrix('last_k_longitude') - data.porto_center[1]) / data.data_std[1]
+
+ x_client = tensor.lvector('origin_call')
+ x_stand = tensor.lvector('origin_stand')
+
+ y = tensor.concatenate((tensor.vector('destination_latitude')[:, None],
+ tensor.vector('destination_longitude')[:, None]), axis=1)
+
+ # Define the model
+ client_embed_table = LookupTable(length=data.n_train_clients+1, dim=config.dim_embed, name='client_lookup')
+ stand_embed_table = LookupTable(length=data.n_stands+1, dim=config.dim_embed, name='stand_lookup')
+ mlp = MLP(activations=[Rectifier() for _ in config.dim_hidden] + [Softmax()],
+ dims=[config.dim_input] + config.dim_hidden + [config.dim_output])
+ classes = theano.shared(numpy.array(config.tgtcls, dtype=theano.config.floatX), name='classes')
+
+ # Create the Theano variables
+ client_embed = client_embed_table.apply(x_client)
+ stand_embed = stand_embed_table.apply(x_stand)
+ inputs = tensor.concatenate([x_firstk_latitude, x_firstk_longitude,
+ x_lastk_latitude, x_lastk_longitude,
+ client_embed, stand_embed],
+ axis=1)
+ # inputs = theano.printing.Print("inputs")(inputs)
+ cls_probas = mlp.apply(inputs)
+ outputs = tensor.dot(cls_probas, classes)
+
+ # Normalize & Center
+ # outputs = theano.printing.Print("normal_outputs")(outputs)
+ outputs = data.data_std * outputs + data.porto_center
+
+ # outputs = theano.printing.Print("outputs")(outputs)
+ # y = theano.printing.Print("y")(y)
+
+ outputs.name = 'outputs'
+
+ # Calculate the cost
+ cost = hdist.erdist(outputs, y).mean()
+ cost.name = 'cost'
+ hcost = hdist.hdist(outputs, y).mean()
+ hcost.name = 'hcost'
+
+ # Initialization
+ client_embed_table.weights_init = IsotropicGaussian(0.001)
+ stand_embed_table.weights_init = IsotropicGaussian(0.001)
+ mlp.weights_init = IsotropicGaussian(0.01)
+ mlp.biases_init = Constant(0.001)
+
+ client_embed_table.initialize()
+ stand_embed_table.initialize()
+ mlp.initialize()
+
+ self.cost = cost
+ self.hcost = hcost
+ self.outputs = outputs