aboutsummaryrefslogtreecommitdiff
path: root/model/simple_mlp.py
diff options
context:
space:
mode:
authorAlex Auvolat <alex.auvolat@ens.fr>2015-05-05 14:15:21 -0400
committerAlex Auvolat <alex.auvolat@ens.fr>2015-05-05 14:15:21 -0400
commit54613c1f9cf510ca7a71d6619418f2247515aec6 (patch)
treebed9a5a11ef5b7feecee44095a29400e32f76b05 /model/simple_mlp.py
parent712035b88be1816d3fbd58ce69ae6464767c780e (diff)
downloadtaxi-54613c1f9cf510ca7a71d6619418f2247515aec6.tar.gz
taxi-54613c1f9cf510ca7a71d6619418f2247515aec6.zip
Add models for time predictioAdd models for time prediction
Diffstat (limited to 'model/simple_mlp.py')
-rw-r--r--model/simple_mlp.py71
1 files changed, 0 insertions, 71 deletions
diff --git a/model/simple_mlp.py b/model/simple_mlp.py
deleted file mode 100644
index fc065f7..0000000
--- a/model/simple_mlp.py
+++ /dev/null
@@ -1,71 +0,0 @@
-from blocks.bricks import MLP, Rectifier, Linear, Sigmoid, Identity
-from blocks.bricks.lookup import LookupTable
-
-from blocks.initialization import IsotropicGaussian, Constant
-
-from theano import tensor
-
-import data
-import hdist
-
-class Model(object):
- def __init__(self, config):
- # The input and the targets
- x_firstk_latitude = (tensor.matrix('first_k_latitude') - data.porto_center[0]) / data.data_std[0]
- x_firstk_longitude = (tensor.matrix('first_k_longitude') - data.porto_center[1]) / data.data_std[1]
-
- x_lastk_latitude = (tensor.matrix('last_k_latitude') - data.porto_center[0]) / data.data_std[0]
- x_lastk_longitude = (tensor.matrix('last_k_longitude') - data.porto_center[1]) / data.data_std[1]
-
- input_list = [x_firstk_latitude, x_firstk_longitude, x_lastk_latitude, x_lastk_longitude]
- embed_tables = []
-
- self.require_inputs = ['first_k_latitude', 'first_k_longitude', 'last_k_latitude', 'last_k_longitude']
-
- for (varname, num, dim) in config.dim_embeddings:
- self.require_inputs.append(varname)
- vardata = tensor.lvector(varname)
- tbl = LookupTable(length=num, dim=dim, name='%s_lookup'%varname)
- embed_tables.append(tbl)
- input_list.append(tbl.apply(vardata))
-
- y = tensor.concatenate((tensor.vector('destination_latitude')[:, None],
- tensor.vector('destination_longitude')[:, None]), axis=1)
-
- # Define the model
- mlp = MLP(activations=[Rectifier() for _ in config.dim_hidden] + [Identity()],
- dims=[config.dim_input] + config.dim_hidden + [config.dim_output])
-
- # Create the Theano variables
- inputs = tensor.concatenate(input_list, axis=1)
- # inputs = theano.printing.Print("inputs")(inputs)
- outputs = mlp.apply(inputs)
-
- # Normalize & Center
- # outputs = theano.printing.Print("normal_outputs")(outputs)
- outputs = data.data_std * outputs + data.porto_center
-
- # outputs = theano.printing.Print("outputs")(outputs)
- # y = theano.printing.Print("y")(y)
-
- outputs.name = 'outputs'
-
- # Calculate the cost
- cost = hdist.erdist(outputs, y).mean()
- cost.name = 'cost'
- hcost = hdist.hdist(outputs, y).mean()
- hcost.name = 'hcost'
-
- # Initialization
- for tbl in embed_tables:
- tbl.weights_init = IsotropicGaussian(0.001)
- mlp.weights_init = IsotropicGaussian(0.01)
- mlp.biases_init = Constant(0.001)
-
- for tbl in embed_tables:
- tbl.initialize()
- mlp.initialize()
-
- self.cost = cost
- self.hcost = hcost
- self.outputs = outputs