diff options
author | Étienne Simon <esimon@esimon.eu> | 2015-05-18 16:22:00 -0400 |
---|---|---|
committer | Étienne Simon <esimon@esimon.eu> | 2015-05-18 16:22:00 -0400 |
commit | 6d946f29f7548c75e97f30c4356dbac200ee6cce (patch) | |
tree | 387e586c7ad0c1a0167d21451c9a8c877cf3ef0e /model/dest_simple_mlp.py | |
parent | 1e6d08b0c9ac5983691b182631c71e9d46ee71cc (diff) | |
download | taxi-6d946f29f7548c75e97f30c4356dbac200ee6cce.tar.gz taxi-6d946f29f7548c75e97f30c4356dbac200ee6cce.zip |
Refactor models, clean the code and separate training from testing.
Diffstat (limited to 'model/dest_simple_mlp.py')
-rw-r--r-- | model/dest_simple_mlp.py | 81 |
1 files changed, 21 insertions, 60 deletions
diff --git a/model/dest_simple_mlp.py b/model/dest_simple_mlp.py index a9e97cb..78d7131 100644 --- a/model/dest_simple_mlp.py +++ b/model/dest_simple_mlp.py @@ -1,71 +1,32 @@ -from blocks.bricks import MLP, Rectifier, Linear, Sigmoid, Identity -from blocks.bricks.lookup import LookupTable - from theano import tensor +from blocks.bricks import application, Identity import data import error +from model.mlp import FFMLP, Stream -class Model(object): - def __init__(self, config): - # The input and the targets - x_firstk_latitude = (tensor.matrix('first_k_latitude') - data.train_gps_mean[0]) / data.train_gps_std[0] - x_firstk_longitude = (tensor.matrix('first_k_longitude') - data.train_gps_mean[1]) / data.train_gps_std[1] - - x_lastk_latitude = (tensor.matrix('last_k_latitude') - data.train_gps_mean[0]) / data.train_gps_std[0] - x_lastk_longitude = (tensor.matrix('last_k_longitude') - data.train_gps_mean[1]) / data.train_gps_std[1] - - input_list = [x_firstk_latitude, x_firstk_longitude, x_lastk_latitude, x_lastk_longitude] - embed_tables = [] - - self.require_inputs = ['first_k_latitude', 'first_k_longitude', 'last_k_latitude', 'last_k_longitude'] - - for (varname, num, dim) in config.dim_embeddings: - self.require_inputs.append(varname) - vardata = tensor.lvector(varname) - tbl = LookupTable(length=num, dim=dim, name='%s_lookup'%varname) - embed_tables.append(tbl) - input_list.append(tbl.apply(vardata)) - - y = tensor.concatenate((tensor.vector('destination_latitude')[:, None], - tensor.vector('destination_longitude')[:, None]), axis=1) - - # Define the model - mlp = MLP(activations=[Rectifier() for _ in config.dim_hidden] + [Identity()], - dims=[config.dim_input] + config.dim_hidden + [config.dim_output]) - - # Create the Theano variables - inputs = tensor.concatenate(input_list, axis=1) - # inputs = theano.printing.Print("inputs")(inputs) - outputs = mlp.apply(inputs) - - # Normalize & Center - # outputs = theano.printing.Print("normal_outputs")(outputs) - outputs = data.train_gps_std * outputs + data.train_gps_mean - - # outputs = theano.printing.Print("outputs")(outputs) - # y = theano.printing.Print("y")(y) - outputs.name = 'outputs' +class Model(FFMLP): + def __init__(self, config, **kwargs): + super(Model, self).__init__(config, output_layer=Identity, **kwargs) - # Calculate the cost - cost = error.erdist(outputs, y).mean() - cost.name = 'cost' - hcost = error.hdist(outputs, y).mean() - hcost.name = 'hcost' + @application(outputs=['destination']) + def predict(self, **kwargs): + outputs = super(Model, self).predict(**kwargs) + return data.train_gps_std * outputs + data.train_gps_mean - # Initialization - for tbl in embed_tables: - tbl.weights_init = config.embed_weights_init - mlp.weights_init = config.mlp_weights_init - mlp.biases_init = config.mlp_biases_init + @predict.property('inputs') + def predict_inputs(self): + return self.inputs - for tbl in embed_tables: - tbl.initialize() - mlp.initialize() + @application(outputs=['cost']) + def cost(self, **kwargs): + y_hat = self.predict(**kwargs) + y = tensor.concatenate((kwargs['destination_latitude'][:, None], + kwargs['destination_longitude'][:, None]), axis=1) - self.cost = cost - self.monitor = [cost, hcost] - self.outputs = outputs - self.pred_vars = ['destination_latitude', 'destination_longitude'] + return error.erdist(y_hat, y).mean() + @cost.property('inputs') + def cost_inputs(self): + return self.inputs + ['destination_latitude', 'destination_longitude'] |