diff options
author | Alex Auvolat <alex.auvolat@ens.fr> | 2015-05-08 17:35:28 -0400 |
---|---|---|
committer | Alex Auvolat <alex.auvolat@ens.fr> | 2015-05-08 17:35:28 -0400 |
commit | aa605460eb5891b64b4e795cbeff9cab474dee0d (patch) | |
tree | cdefa2275fec5fda7e3a57a7e350d612606718ba /config | |
parent | d38cee1ceaed486c1ba3bed9271008dc82fde331 (diff) | |
download | taxi-aa605460eb5891b64b4e795cbeff9cab474dee0d.tar.gz taxi-aa605460eb5891b64b4e795cbeff9cab474dee0d.zip |
Add model with hidden layers specific to time/dest prediction.
Diffstat (limited to 'config')
-rw-r--r-- | config/joint_simple_mlp_tgtcls_111_cswdtx.py | 55 |
1 files changed, 55 insertions, 0 deletions
diff --git a/config/joint_simple_mlp_tgtcls_111_cswdtx.py b/config/joint_simple_mlp_tgtcls_111_cswdtx.py new file mode 100644 index 0000000..deb6eba --- /dev/null +++ b/config/joint_simple_mlp_tgtcls_111_cswdtx.py @@ -0,0 +1,55 @@ +import cPickle + +import model.joint_simple_mlp_tgtcls as model + +from blocks.initialization import IsotropicGaussian, Constant + +import data + +n_begin_end_pts = 5 # how many points we consider at the beginning and end of the known trajectory +n_end_pts = 5 + +n_valid = 1000 + +with open("%s/arrival-clusters.pkl" % data.path) as f: + dest_tgtcls = cPickle.load(f) + +# generate target classes for time prediction as a Fibonacci sequence +time_tgtcls = [1, 2] +for i in range(22): + time_tgtcls.append(time_tgtcls[-1] + time_tgtcls[-2]) + +dim_embeddings = [ + ('origin_call', data.origin_call_size+1, 10), + ('origin_stand', data.stands_size+1, 10), + ('week_of_year', 52, 10), + ('day_of_week', 7, 10), + ('qhour_of_day', 24 * 4, 10), + ('day_type', 3, 10), + ('taxi_id', 448, 10), +] + +# Common network part +dim_input = n_begin_end_pts * 2 * 2 + sum(x for (_, _, x) in dim_embeddings) +dim_hidden = [500] + +# Destination prediction part +dim_hidden_dest = [100] +dim_output_dest = len(dest_tgtcls) + +# Time prediction part +dim_hidden_time = [100] +dim_output_time = len(time_tgtcls) + +# Cost ratio between distance cost and time cost +time_cost_factor = 4 + +embed_weights_init = IsotropicGaussian(0.001) +mlp_weights_init = IsotropicGaussian(0.01) +mlp_biases_init = Constant(0.001) + +learning_rate = 0.0001 +momentum = 0.99 +batch_size = 200 + +valid_set = 'cuts/test_times_0' |