aboutsummaryrefslogtreecommitdiff
path: root/config
diff options
context:
space:
mode:
authorÉtienne Simon <esimon@esimon.eu>2015-06-21 17:01:59 -0400
committerÉtienne Simon <esimon@esimon.eu>2015-06-21 17:01:59 -0400
commit2a6980fdac3f6c3987d92882368bf413b50dee36 (patch)
treef74a175969e720fe9a19544bb6e52c7337df2793 /config
parent0fd3b1497ffa1bb625bf593c845e28901bc640b7 (diff)
downloadtaxi-2a6980fdac3f6c3987d92882368bf413b50dee36.tar.gz
taxi-2a6980fdac3f6c3987d92882368bf413b50dee36.zip
Add bugged memory networks
Diffstat (limited to 'config')
-rw-r--r--config/memory_network_1.py43
1 files changed, 43 insertions, 0 deletions
diff --git a/config/memory_network_1.py b/config/memory_network_1.py
new file mode 100644
index 0000000..00fc958
--- /dev/null
+++ b/config/memory_network_1.py
@@ -0,0 +1,43 @@
+from blocks.initialization import IsotropicGaussian, Constant
+
+import data
+from model.memory_network import Model, Stream
+
+
+n_begin_end_pts = 5 # how many points we consider at the beginning and end of the known trajectory
+
+dim_embeddings = [
+ ('origin_call', data.origin_call_train_size, 10),
+ ('origin_stand', data.stands_size, 10),
+ ('week_of_year', 52, 10),
+ ('day_of_week', 7, 10),
+ ('qhour_of_day', 24 * 4, 10),
+ ('day_type', 3, 10),
+]
+
+
+class MLPConfig(object):
+ __slots__ = ('dim_input', 'dim_hidden', 'dim_output', 'weights_init', 'biases_init')
+
+prefix_encoder = MLPConfig()
+prefix_encoder.dim_input = n_begin_end_pts * 2 * 2 + sum(x for (_, _, x) in dim_embeddings)
+prefix_encoder.dim_hidden = [50]
+prefix_encoder.weights_init = IsotropicGaussian(0.01)
+prefix_encoder.biases_init = Constant(0.001)
+
+candidate_encoder = MLPConfig()
+candidate_encoder.dim_input = n_begin_end_pts * 2 + sum(x for (_, _, x) in dim_embeddings)
+candidate_encoder.dim_hidden = [50]
+candidate_encoder.weights_init = IsotropicGaussian(0.01)
+candidate_encoder.biases_init = Constant(0.001)
+
+
+embed_weights_init = IsotropicGaussian(0.001)
+
+batch_size = 32
+
+valid_set = 'cuts/test_times_0'
+max_splits = 1
+
+train_candidate_size = 1000
+valid_candidate_size = 10000