aboutsummaryrefslogtreecommitdiff
path: root/config/memory_network_adeb.py
diff options
context:
space:
mode:
authorAdeB <adbrebs@gmail.com>2015-06-24 15:12:15 -0400
committerAdeB <adbrebs@gmail.com>2015-06-24 15:12:15 -0400
commit88cdc3f8047a05bc5971eaa915ca6626f89a3e78 (patch)
treeaf9bc201cf442588492316b2360bd0bd16c8b843 /config/memory_network_adeb.py
parentbd08e452093bba68fe2d79b1e9da76488b203720 (diff)
downloadtaxi-88cdc3f8047a05bc5971eaa915ca6626f89a3e78.tar.gz
taxi-88cdc3f8047a05bc5971eaa915ca6626f89a3e78.zip
New configs. training step rule out of train.py
Diffstat (limited to 'config/memory_network_adeb.py')
-rw-r--r--config/memory_network_adeb.py46
1 files changed, 46 insertions, 0 deletions
diff --git a/config/memory_network_adeb.py b/config/memory_network_adeb.py
new file mode 100644
index 0000000..1d7dc5d
--- /dev/null
+++ b/config/memory_network_adeb.py
@@ -0,0 +1,46 @@
+from blocks.initialization import IsotropicGaussian, Constant
+from blocks.algorithms import AdaDelta, CompositeRule, GradientDescent, RemoveNotFinite, StepRule, Momentum
+
+import data
+from model.memory_network import Model, Stream
+
+
+n_begin_end_pts = 5 # how many points we consider at the beginning and end of the known trajectory
+
+dim_embeddings = [
+ ('origin_call', data.origin_call_train_size, 10),
+ ('origin_stand', data.stands_size, 10),
+ ('week_of_year', 52, 10),
+ ('day_of_week', 7, 10),
+ ('qhour_of_day', 24 * 4, 10),
+ ('day_type', 3, 10),
+]
+
+
+class MLPConfig(object):
+ __slots__ = ('dim_input', 'dim_hidden', 'dim_output', 'weights_init', 'biases_init')
+
+prefix_encoder = MLPConfig()
+prefix_encoder.dim_input = n_begin_end_pts * 2 * 2 + sum(x for (_, _, x) in dim_embeddings)
+prefix_encoder.dim_hidden = [100, 100]
+prefix_encoder.weights_init = IsotropicGaussian(0.001)
+prefix_encoder.biases_init = Constant(0.0001)
+
+candidate_encoder = MLPConfig()
+candidate_encoder.dim_input = n_begin_end_pts * 2 * 2 + sum(x for (_, _, x) in dim_embeddings)
+candidate_encoder.dim_hidden = [100, 100]
+candidate_encoder.weights_init = IsotropicGaussian(0.001)
+candidate_encoder.biases_init = Constant(0.0001)
+
+
+embed_weights_init = IsotropicGaussian(0.001)
+
+step_rule = Momentum(learning_rate=0.001, momentum=0.9)
+batch_size = 32
+
+valid_set = 'cuts/test_times_0'
+max_splits = 1
+num_cuts = 1000
+
+train_candidate_size = 1000
+valid_candidate_size = 10000