diff options
author | Alex Auvolat <alex.auvolat@ens.fr> | 2015-05-08 14:59:44 -0400 |
---|---|---|
committer | Alex Auvolat <alex.auvolat@ens.fr> | 2015-05-08 15:00:50 -0400 |
commit | 20a1a01cef9d61ce9dd09995f2c811ab5aca2a9d (patch) | |
tree | c2638b5607820e596b8d7cd46e5137b41b25c61f /config/joint_simple_mlp_tgtcls_1_cswdtx.py | |
parent | 0ecac7973fd02f44af9c8bc5765f7c159c94b23a (diff) | |
download | taxi-20a1a01cef9d61ce9dd09995f2c811ab5aca2a9d.tar.gz taxi-20a1a01cef9d61ce9dd09995f2c811ab5aca2a9d.zip |
Add model for a network that predicts both time and destination.
Diffstat (limited to 'config/joint_simple_mlp_tgtcls_1_cswdtx.py')
-rw-r--r-- | config/joint_simple_mlp_tgtcls_1_cswdtx.py | 52 |
1 files changed, 52 insertions, 0 deletions
diff --git a/config/joint_simple_mlp_tgtcls_1_cswdtx.py b/config/joint_simple_mlp_tgtcls_1_cswdtx.py new file mode 100644 index 0000000..f3de40b --- /dev/null +++ b/config/joint_simple_mlp_tgtcls_1_cswdtx.py @@ -0,0 +1,52 @@ +import cPickle + +import model.joint_simple_mlp_tgtcls as model + +from blocks.initialization import IsotropicGaussian, Constant + +import data + +n_begin_end_pts = 5 # how many points we consider at the beginning and end of the known trajectory +n_end_pts = 5 + +n_valid = 1000 + +with open("%s/arrival-clusters.pkl" % data.path) as f: + dest_tgtcls = cPickle.load(f) + +# generate target classes for time prediction as a Fibonacci sequence +time_tgtcls = [1, 2] +for i in range(22): + time_tgtcls.append(time_tgtcls[-1] + time_tgtcls[-2]) + +dim_embeddings = [ + ('origin_call', data.origin_call_size+1, 10), + ('origin_stand', data.stands_size+1, 10), + ('week_of_year', 52, 10), + ('day_of_week', 7, 10), + ('qhour_of_day', 24 * 4, 10), + ('day_type', 3, 10), + ('taxi_id', 448, 10), +] + +# Common network part +dim_input = n_begin_end_pts * 2 * 2 + sum(x for (_, _, x) in dim_embeddings) +dim_hidden = [500] + +# Destination prediction part +dim_hidden_dest = [] +dim_output_dest = len(dest_tgtcls) + +# Time prediction part +dim_hidden_time = [] +dim_output_time = len(time_tgtcls) + +embed_weights_init = IsotropicGaussian(0.001) +mlp_weights_init = IsotropicGaussian(0.01) +mlp_biases_init = Constant(0.001) + +learning_rate = 0.0001 +momentum = 0.99 +batch_size = 200 + +valid_set = 'cuts/test_times_0' |