aboutsummaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorÉtienne Simon <esimon@esimon.eu>2015-05-04 15:33:34 -0400
committerÉtienne Simon <esimon@esimon.eu>2015-05-04 15:33:34 -0400
commitf9a31bd246e3c4736d3f532b566b7437eba6b4de (patch)
treead5c5da41acf52fb6642d6c7db1fbeb149c61c25
parent929eaf8dd0233f8423b24b93b78c99fc9df65343 (diff)
downloadtaxi-f9a31bd246e3c4736d3f532b566b7437eba6b4de.tar.gz
taxi-f9a31bd246e3c4736d3f532b566b7437eba6b4de.zip
Fix hdf5 converter
-rwxr-xr-xconvert_data.py52
1 files changed, 31 insertions, 21 deletions
diff --git a/convert_data.py b/convert_data.py
index 9684fa9..f069580 100755
--- a/convert_data.py
+++ b/convert_data.py
@@ -1,6 +1,6 @@
#!/usr/bin/env python
import os, h5py, csv, sys, numpy, theano, ast
-from fuel.datasets.hdf5 import H5PYDataset
+from fuel.converters.base import fill_hdf5_file
test_size = 320 # `wc -l test.csv` - 1 # Minus 1 to ignore the header
train_size = 1710670 # `wc -l train.csv` - 1
@@ -31,9 +31,9 @@ def get_unique_origin_call(val):
return len(origin_call_dict) - 1
def read_stands(input_directory, h5file):
- stands_name = h5file.create_dataset('stands_name', shape=(stands_size+1,), dtype=('a', 24))
- stands_latitude = h5file.create_dataset('stands_latitude', shape=(stands_size+1,), dtype=theano.config.floatX)
- stands_longitude = h5file.create_dataset('stands_longitude', shape=(stands_size+1,), dtype=theano.config.floatX)
+ stands_name = numpy.empty(shape=(stands_size+1,), dtype=('a', 24))
+ stands_latitude = numpy.empty(shape=(stands_size+1,), dtype=theano.config.floatX)
+ stands_longitude = numpy.empty(shape=(stands_size+1,), dtype=theano.config.floatX)
stands_name[0] = 'None'
stands_latitude[0] = stands_longitude[0] = 0
with open(os.path.join(input_directory, 'metaData_taxistandsID_name_GPSlocation.csv'), 'r') as f:
@@ -44,9 +44,11 @@ def read_stands(input_directory, h5file):
stands_name[id] = line[1]
stands_latitude[id] = float(line[2])
stands_longitude[id] = float(line[3])
- return {'stands': {array: (0, stands_size+1) for array in ['stands_name', 'stands_latitude', 'stands_longitude' ]}}
+ return (('stands', 'stands_name', stands_name),
+ ('stands', 'stands_latitude', stands_latitude),
+ ('stands', 'stands_longitude', stands_longitude))
-def read_taxis(input_directory, h5file, dataset, prefix):
+def read_taxis(input_directory, h5file, dataset):
print >> sys.stderr, 'read %s: begin' % dataset
size=globals()['%s_size'%dataset]
trip_id = numpy.empty(shape=(size,), dtype='S19')
@@ -78,37 +80,45 @@ def read_taxis(input_directory, h5file, dataset, prefix):
latitude[id] = numpy.array([point[1] for point in polyline], dtype=theano.config.floatX)
longitude[id] = numpy.array([point[0] for point in polyline], dtype=theano.config.floatX)
id+=1
- splits = {}
+ splits = ()
print >> sys.stderr, 'read %s: writing' % dataset
- for array in ['trip_id', 'call_type', 'origin_call', 'origin_stand', 'taxi_id', 'timestamp', 'day_type', 'missing_data', 'latitude', 'longitude']:
- name = '%s%s' % (prefix, array)
- h5file.create_dataset(name, data=locals()[array])
- splits[name] = (0, size)
+ for name in ['trip_id', 'call_type', 'origin_call', 'origin_stand', 'taxi_id', 'timestamp', 'day_type', 'missing_data', 'latitude', 'longitude']:
+ splits += ((dataset, name, locals()[name]),)
print >> sys.stderr, 'read %s: end' % dataset
- return {dataset: splits}
+ return splits
def unique(h5file):
- unique_taxi_id = h5file.create_dataset('unique_taxi_id', shape=(taxi_id_size,), dtype=numpy.int32)
+ unique_taxi_id = numpy.empty(shape=(taxi_id_size,), dtype=numpy.int32)
assert len(taxi_id_dict) == taxi_id_size
for k, v in taxi_id_dict.items():
unique_taxi_id[v] = k
- unique_origin_call = h5file.create_dataset('unique_origin_call', shape=(origin_call_size+1,), dtype=numpy.int32)
+ unique_origin_call = numpy.empty(shape=(origin_call_size+1,), dtype=numpy.int32)
assert len(origin_call_dict) == origin_call_size+1
for k, v in origin_call_dict.items():
unique_origin_call[v] = k
- return {'unique': {'unique_taxi_id': (0, taxi_id_size), 'unique_origin_call': (0, origin_call_size+1)}}
+ return (('unique_taxi_id', 'unique_taxi_id', unique_taxi_id),
+ ('unique_origin_call', 'unique_origin_call', unique_origin_call))
def convert(input_directory, save_path):
h5file = h5py.File(save_path, 'w')
- split = {}
- split.update(read_stands(input_directory, h5file))
- split.update(read_taxis(input_directory, h5file, 'train', ''))
+ split = ()
+ split += read_stands(input_directory, h5file)
+ split += read_taxis(input_directory, h5file, 'train')
print 'First origin_call not present in training set: ', len(origin_call_dict)
- split.update(read_taxis(input_directory, h5file, 'test', 'test_'))
- split.update(unique(h5file))
- h5file.attrs['split'] = H5PYDataset.create_split_array(split)
+ split += read_taxis(input_directory, h5file, 'test')
+ split += unique(h5file)
+
+ fill_hdf5_file(h5file, split)
+
+ for name in ['stands_name', 'stands_latitude', 'stands_longitude']:
+ h5file[name].dims[0].label = 'index'
+ for name in ['trip_id', 'call_type', 'origin_call', 'origin_stand', 'taxi_id', 'timestamp', 'day_type', 'missing_data', 'latitude', 'longitude']:
+ h5file[name].dims[0].label = 'batch'
+ h5file['unique_taxi_id'].dims[0].label = 'unormalized taxi_id'
+ h5file['unique_origin_call'].dims[0].label = 'unormalized origin_call'
+
h5file.flush()
h5file.close()