aboutsummaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorAlex Auvolat <alex.auvolat@ens.fr>2015-05-05 09:30:32 -0400
committerAlex Auvolat <alex.auvolat@ens.fr>2015-05-05 09:30:32 -0400
commit95b565afb7e1c2a6eb23ca9f7c13cd6efaf55a39 (patch)
tree2f40fdf2e80c00ca41c5fb55b597867d2ac9b26b
parent1556e9087f7e49bd75c8e236d2d3fb4fd936dc40 (diff)
downloadtaxi-95b565afb7e1c2a6eb23ca9f7c13cd6efaf55a39.tar.gz
taxi-95b565afb7e1c2a6eb23ca9f7c13cd6efaf55a39.zip
New config (added a hidden layer), small changes to train.py
-rw-r--r--config/simple_mlp_tgtcls_1.py25
-rw-r--r--train.py4
2 files changed, 27 insertions, 2 deletions
diff --git a/config/simple_mlp_tgtcls_1.py b/config/simple_mlp_tgtcls_1.py
new file mode 100644
index 0000000..8d6c37b
--- /dev/null
+++ b/config/simple_mlp_tgtcls_1.py
@@ -0,0 +1,25 @@
+import cPickle
+
+import data
+
+import model.simple_mlp_tgtcls as model
+
+n_dow = 7 # number of division for dayofweek/dayofmonth/hourofday
+n_dom = 31
+n_hour = 24
+
+n_begin_end_pts = 5 # how many points we consider at the beginning and end of the known trajectory
+n_end_pts = 5
+
+n_valid = 1000
+
+with open(data.DATA_PATH + "/arrival-clusters.pkl") as f: tgtcls = cPickle.load(f)
+
+dim_embed = 10
+dim_input = n_begin_end_pts * 2 * 2 + dim_embed + dim_embed
+dim_hidden = [500]
+dim_output = tgtcls.shape[0]
+
+learning_rate = 0.0001
+momentum = 0.99
+batch_size = 32
diff --git a/train.py b/train.py
index dcf3fcd..5135544 100644
--- a/train.py
+++ b/train.py
@@ -110,7 +110,7 @@ def main():
# Checkpoint('model.pkl', every_n_batches=100),
Dump('model_data/' + model_name, every_n_batches=1000),
LoadFromDump('model_data/' + model_name),
- FinishAfter(after_epoch=5)
+ FinishAfter(after_epoch=10),
]
main_loop = MainLoop(
@@ -124,7 +124,7 @@ def main():
# Produce an output on the test data
test_stream = setup_test_stream()
- outfile = open("test-output.csv", "w")
+ outfile = open("test-output-%s.csv" % model_name, "w")
outcsv = csv.writer(outfile)
outcsv.writerow(["TRIP_ID", "LATITUDE", "LONGITUDE"])
for out in apply_model.Apply(outputs=outputs, stream=test_stream, return_vars=['trip_id', 'outputs']):