aboutsummaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorÉtienne Simon <esimon@esimon.eu>2015-05-05 23:03:13 -0400
committerÉtienne Simon <esimon@esimon.eu>2015-05-05 23:03:13 -0400
commit60aa0d3fdd42d7489cc69acbb54c59d7c249ea34 (patch)
tree3ef37dab66250972cb226bff2ffb49f716a85915
parentc29a0d3f22134a8d1f5d557b325f6779c5961546 (diff)
downloadtaxi-60aa0d3fdd42d7489cc69acbb54c59d7c249ea34.tar.gz
taxi-60aa0d3fdd42d7489cc69acbb54c59d7c249ea34.zip
Adapt Alexandre's model to the new interface
-rw-r--r--config/dest_simple_mlp_tgtcls_1_cswdtx_alexandre.py8
-rw-r--r--model/dest_simple_mlp_tgtcls_alexandre.py8
2 files changed, 9 insertions, 7 deletions
diff --git a/config/dest_simple_mlp_tgtcls_1_cswdtx_alexandre.py b/config/dest_simple_mlp_tgtcls_1_cswdtx_alexandre.py
index 91ad71c..5642f27 100644
--- a/config/dest_simple_mlp_tgtcls_1_cswdtx_alexandre.py
+++ b/config/dest_simple_mlp_tgtcls_1_cswdtx_alexandre.py
@@ -9,11 +9,11 @@ n_end_pts = 5
n_valid = 1000
-with open(data.DATA_PATH + "/arrival-clusters.pkl") as f: tgtcls = cPickle.load(f)
+with open("%s/arrival-clusters.pkl" % data.path) as f: tgtcls = cPickle.load(f)
dim_embeddings = [
- ('origin_call', data.n_train_clients+1, 10),
- ('origin_stand', data.n_stands+1, 10),
+ ('origin_call', data.origin_call_train_size, 10),
+ ('origin_stand', data.stands_size, 10),
('week_of_year', 52, 10),
('day_of_week', 7, 10),
('qhour_of_day', 24 * 4, 10),
@@ -28,3 +28,5 @@ dim_output = tgtcls.shape[0]
learning_rate = 0.01
momentum = 0.9
batch_size = 200
+
+valid_set = 'cuts/test_times_0'
diff --git a/model/dest_simple_mlp_tgtcls_alexandre.py b/model/dest_simple_mlp_tgtcls_alexandre.py
index 87e20a3..825bf80 100644
--- a/model/dest_simple_mlp_tgtcls_alexandre.py
+++ b/model/dest_simple_mlp_tgtcls_alexandre.py
@@ -14,11 +14,11 @@ import error
class Model(object):
def __init__(self, config):
# The input and the targets
- x_firstk_latitude = (tensor.matrix('first_k_latitude') - data.porto_center[0]) / data.data_std[0]
- x_firstk_longitude = (tensor.matrix('first_k_longitude') - data.porto_center[1]) / data.data_std[1]
+ x_firstk_latitude = (tensor.matrix('first_k_latitude') - data.train_gps_mean[0]) / data.train_gps_std[0]
+ x_firstk_longitude = (tensor.matrix('first_k_longitude') - data.train_gps_mean[1]) / data.train_gps_std[1]
- x_lastk_latitude = (tensor.matrix('last_k_latitude') - data.porto_center[0]) / data.data_std[0]
- x_lastk_longitude = (tensor.matrix('last_k_longitude') - data.porto_center[1]) / data.data_std[1]
+ x_lastk_latitude = (tensor.matrix('last_k_latitude') - data.train_gps_mean[0]) / data.train_gps_std[0]
+ x_lastk_longitude = (tensor.matrix('last_k_longitude') - data.train_gps_mean[1]) / data.train_gps_std[1]
input_list = [x_firstk_latitude, x_firstk_longitude, x_lastk_latitude, x_lastk_longitude]
embed_tables = []