aboutsummaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorAlex Auvolat <alex.auvolat@ens.fr>2015-04-24 15:12:17 -0400
committerAlex Auvolat <alex.auvolat@ens.fr>2015-04-24 15:12:17 -0400
commit5589a8af8967cfc73d3b6fda8f86acc0d08172b8 (patch)
treef7b2384cbfcf4372594e3c8876b7293ca8ee7c0d
parent1b199b0fd068dcbe2502a613caff3a1c322f73e1 (diff)
downloadtaxi-5589a8af8967cfc73d3b6fda8f86acc0d08172b8.tar.gz
taxi-5589a8af8967cfc73d3b6fda8f86acc0d08172b8.zip
Add simple unfinished blocks model
-rw-r--r--.gitignore3
-rw-r--r--__init__.py0
l---------data/test.csv1
l---------data/train.csv1
-rw-r--r--model.py113
5 files changed, 116 insertions, 2 deletions
diff --git a/.gitignore b/.gitignore
index ba74660..3b04a69 100644
--- a/.gitignore
+++ b/.gitignore
@@ -55,3 +55,6 @@ docs/_build/
# PyBuilder
target/
+
+# Vim tmpfiles
+*.swp
diff --git a/__init__.py b/__init__.py
new file mode 100644
index 0000000..e69de29
--- /dev/null
+++ b/__init__.py
diff --git a/data/test.csv b/data/test.csv
deleted file mode 120000
index b797a91..0000000
--- a/data/test.csv
+++ /dev/null
@@ -1 +0,0 @@
-/data/lisatmp3/auvolat/taxikaggle/test.csv \ No newline at end of file
diff --git a/data/train.csv b/data/train.csv
deleted file mode 120000
index d394bdf..0000000
--- a/data/train.csv
+++ /dev/null
@@ -1 +0,0 @@
-/data/lisatmp3/auvolat/taxikaggle/train.csv \ No newline at end of file
diff --git a/model.py b/model.py
new file mode 100644
index 0000000..0171a93
--- /dev/null
+++ b/model.py
@@ -0,0 +1,113 @@
+import logging
+import os
+from argparse import ArgumentParser
+
+from theano import tensor
+from theano.ifelse import ifelse
+
+from blocks.bricks import MLP, Rectifier, Linear
+from blocks.bricks.lookup import LookupTable
+
+from blocks.initialization import IsotropicGaussian, Constant
+from blocks.model import Model
+
+from fuel.transformers import Batch
+from fuel.streams import DataStream
+from fuel.schemes import ConstantScheme
+
+from blocks.algorithms import GradientDescent, Scale
+from blocks.graph import ComputationGraph
+from blocks.main_loop import MainLoop
+from blocks.extensions import Printing
+from blocks.extensions.saveload import Dump, LoadFromDump
+from blocks.extensions.monitoring import DataStreamMonitoring
+
+import data
+
+n_dow = 7 # number of division for dayofweek/dayofmonth/hourofday
+n_dom = 31
+n_hour = 24
+
+n_clients = 57106
+n_stands = 63
+n_embed = n_clients + n_stands # embeddings capturing local parameters
+
+n_begin_pts = 5 # how many points we consider at the beginning and end of the known trajectory
+n_end_pts = 5
+
+dim_embed = 50
+dim_hidden = 200
+
+learning_rate = 0.1
+batch_size = 32
+
+def main():
+ # The input and the targets
+ x_firstk = tensor.matrix('first_k')
+ x_lastk = tensor.matrix('last_k')
+ x_client = tensor.lmatrix('client')
+ y = tensor.vector('targets')
+
+ # Define the model
+ client_embed_table = LookupTable(length=n_clients, dim=dim_embed, name='lookup')
+ hidden_layer = MLP(activations=[Rectifier()],
+ dims=[(n_begin_pts + n_end_pts) * 2 + dim_embed, dim_hidden])
+ output_layer = Linear(input_dim=dim_hidden, output_dim=2)
+
+ # Create the Theano variables
+
+ client_embed = client_embed_table.apply(x_client).flatten(ndim=2)
+ inputs = tensor.concatenate([x_firstk, x_lastk, client_embed], axis=1)
+ hidden = hidden_layer.apply(inputs)
+ outputs = output_layer.apply(hidden)
+
+ # Calculate the cost
+ cost = (outputs - y).norm(2, axis=1).mean()
+
+ # Initialization
+ client_embed_table.weights_init = IsotropicGaussian(0.001)
+ hidden_layer.weights_init = IsotropicGaussian(0.01)
+ hidden_layer.biases_init = Constant(0.001)
+ output_layer.weights_init = IsotropicGaussian(0.001)
+ output_layer.biases_init = Constant(0.001)
+
+ client_embed_table.initialize()
+ hidden_layer.initialize()
+ output_layer.initialize()
+
+ # Load the training and test data
+ train = data.train_data
+ stream = DataStream(train)
+ train_stream = Batch(stream, iteration_scheme=ConstantScheme(batch_size))
+
+ # valid = data.valid_data
+ # stream = DataStream(valid)
+ # valid_stream = Batch(stream, iteration_scheme=ConstantScheme(batch_size))
+ valid_stream = train_stream
+
+ # Training
+ cg = ComputationGraph(cost)
+ algorithm = GradientDescent(
+ cost=cost,
+ # step_rule=AdaDelta(decay_rate=0.5),
+ step_rule=Scale(learning_rate=learning_rate),
+ params=cg.parameters)
+
+ extensions=[DataStreamMonitoring([cost], valid_stream,
+ prefix='valid',
+ every_n_batches=100),
+ Printing(every_n_batches=100),
+ Dump('ngram_blocks_model', every_n_batches=100),
+ LoadFromDump('ngram_blocks_model')]
+
+ main_loop = MainLoop(
+ model=Model([cost]),
+ data_stream=train_stream,
+ algorithm=algorithm,
+ extensions=extensions)
+ main_loop.run()
+
+if __name__ == "__main__":
+ logging.basicConfig(level=logging.INFO)
+ main()
+