aboutsummaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorAlex Auvolat <alex.auvolat@ens.fr>2015-07-10 17:16:20 -0400
committerAlex Auvolat <alex.auvolat@ens.fr>2015-07-10 17:16:20 -0400
commit27a0e0949c6ca3f7bd18569a23ddd0e1b3e9a64e (patch)
tree1201f8abe7c664f15084b1d48ed8de92c72879d8
parent793be7b049cecba43072858341dc7006fef352e7 (diff)
downloadtaxi-27a0e0949c6ca3f7bd18569a23ddd0e1b3e9a64e.tar.gz
taxi-27a0e0949c6ca3f7bd18569a23ddd0e1b3e9a64e.zip
Batch shuffling
-rw-r--r--config/dest_mlp_tgtcls_1_cswdtx_batchshuffle.py4
-rw-r--r--model/mlp.py18
2 files changed, 13 insertions, 9 deletions
diff --git a/config/dest_mlp_tgtcls_1_cswdtx_batchshuffle.py b/config/dest_mlp_tgtcls_1_cswdtx_batchshuffle.py
index a4db33c..b816930 100644
--- a/config/dest_mlp_tgtcls_1_cswdtx_batchshuffle.py
+++ b/config/dest_mlp_tgtcls_1_cswdtx_batchshuffle.py
@@ -23,14 +23,14 @@ dim_embeddings = [
]
dim_input = n_begin_end_pts * 2 * 2 + sum(x for (_, _, x) in dim_embeddings)
-dim_hidden = [1000]
+dim_hidden = [500]
dim_output = tgtcls.shape[0]
embed_weights_init = IsotropicGaussian(0.01)
mlp_weights_init = IsotropicGaussian(0.1)
mlp_biases_init = Constant(0.01)
-step_rule = Momentum(learning_rate=0.01, momentum=0.9)
+step_rule = Momentum(learning_rate=0.001, momentum=0.99)
batch_size = 200
diff --git a/model/mlp.py b/model/mlp.py
index 1f53e8c..7d04c82 100644
--- a/model/mlp.py
+++ b/model/mlp.py
@@ -52,6 +52,12 @@ class FFMLP(Initializable):
def predict_inputs(self):
return self.inputs
+class UniformGenerator(object):
+ def __init__(self):
+ self.rng = numpy.random.RandomState(123)
+ def __call__(self, *args):
+ return float(self.rng.uniform())
+
class Stream(object):
def __init__(self, config):
self.config = config
@@ -69,17 +75,15 @@ class Stream(object):
stream = transformers.TaxiExcludeTrips(stream, valid_trips_ids)
stream = transformers.TaxiGenerateSplits(stream, max_splits=self.config.max_splits)
- stream = transformers.add_destination(stream)
-
- stream = transformers.taxi_add_datetime(stream)
- stream = transformers.taxi_add_first_last_len(stream, self.config.n_begin_end_pts)
- stream = transformers.Select(stream, tuple(req_vars))
if hasattr(self.config, 'shuffle_batch_size'):
stream = transformers.Batch(stream, iteration_scheme=ConstantScheme(self.config.shuffle_batch_size))
- rng = numpy.random.RandomState(123)
- stream = Mapping(stream, SortMapping(lambda x: float(rng.uniform())))
+ stream = Mapping(stream, SortMapping(key=UniformGenerator()))
stream = Unpack(stream)
+
+ stream = transformers.taxi_add_datetime(stream)
+ stream = transformers.taxi_add_first_last_len(stream, self.config.n_begin_end_pts)
+ stream = transformers.Select(stream, tuple(req_vars))
stream = Batch(stream, iteration_scheme=ConstantScheme(self.config.batch_size))