diff options
author | Étienne Simon <esimon@esimon.eu> | 2015-07-27 13:45:00 -0400 |
---|---|---|
committer | Étienne Simon <esimon@esimon.eu> | 2015-07-27 13:45:00 -0400 |
commit | 0725db3a1a3716e1a51ce3ac6f88ed5e83eae89a (patch) | |
tree | b3ce7a1faa4b3dd6d133b393c3c5cdba9f816a35 | |
parent | 5cff3a0d1ce5ae114d9090e41bccef294bfd0015 (diff) | |
download | taxi-0725db3a1a3716e1a51ce3ac6f88ed5e83eae89a.tar.gz taxi-0725db3a1a3716e1a51ce3ac6f88ed5e83eae89a.zip |
memory net mlp 2 momentum
-rw-r--r-- | config/memory_network_mlp_2_momentum.py | 54 |
1 files changed, 54 insertions, 0 deletions
diff --git a/config/memory_network_mlp_2_momentum.py b/config/memory_network_mlp_2_momentum.py new file mode 100644 index 0000000..5a881ce --- /dev/null +++ b/config/memory_network_mlp_2_momentum.py @@ -0,0 +1,54 @@ +from blocks.initialization import IsotropicGaussian, Constant + +from blocks.bricks import Tanh + +import data +from model.memory_network_mlp import Model, Stream + +n_begin_end_pts = 5 + +dim_embeddings = [ + ('origin_call', data.origin_call_train_size, 10), + ('origin_stand', data.stands_size, 10), + ('week_of_year', 52, 10), + ('day_of_week', 7, 10), + ('qhour_of_day', 24 * 4, 10), + ('day_type', 3, 10), +] + +embed_weights_init = IsotropicGaussian(0.001) + +class MLPConfig(object): + __slots__ = ('dim_input', 'dim_hidden', 'dim_output', 'weights_init', 'biases_init', 'embed_weights_init', 'dim_embeddings') + +prefix_encoder = MLPConfig() +prefix_encoder.dim_input = n_begin_end_pts * 2 * 2 + sum(x for (_, _, x) in dim_embeddings) +prefix_encoder.dim_hidden = [100, 100] +prefix_encoder.weights_init = IsotropicGaussian(0.01) +prefix_encoder.biases_init = Constant(0.001) +prefix_encoder.embed_weights_init = embed_weights_init +prefix_encoder.dim_embeddings = dim_embeddings + +candidate_encoder = MLPConfig() +candidate_encoder.dim_input = n_begin_end_pts * 2 * 2 + sum(x for (_, _, x) in dim_embeddings) +candidate_encoder.dim_hidden = [100, 100] +candidate_encoder.weights_init = IsotropicGaussian(0.01) +candidate_encoder.biases_init = Constant(0.001) +candidate_encoder.embed_weights_init = embed_weights_init +candidate_encoder.dim_embeddings = dim_embeddings + +representation_size = 100 +representation_activation = Tanh + +normalize_representation = True + +step_rule = Momentum(learning_rate=0.01, momentum=0.9) + +batch_size = 100 +batch_sort_size = 20 + +max_splits = 100 + +train_candidate_size = 1000 +valid_candidate_size = 1000 +test_candidate_size = 1000 |