import logging
import os
from argparse import ArgumentParser
from theano import tensor
from theano.ifelse import ifelse
from blocks.bricks import MLP, Rectifier, Linear
from blocks.bricks.lookup import LookupTable
from blocks.initialization import IsotropicGaussian, Constant
from blocks.model import Model
from fuel.transformers import Batch
from fuel.streams import DataStream
from fuel.schemes import ConstantScheme
from blocks.algorithms import GradientDescent, Scale
from blocks.graph import ComputationGraph
from blocks.main_loop import MainLoop
from blocks.extensions import Printing
from blocks.extensions.saveload import Dump, LoadFromDump
from blocks.extensions.monitoring import DataStreamMonitoring
import data
n_dow = 7 # number of division for dayofweek/dayofmonth/hourofday
n_dom = 31
n_hour = 24
n_clients = 57106
n_stands = 63
n_embed = n_clients + n_stands # embeddings capturing local parameters
n_begin_pts = 5 # how many points we consider at the beginning and end of the known trajectory
n_end_pts = 5
dim_embed = 50
dim_hidden = 200
learning_rate = 0.1
batch_size = 32
def main():
# The input and the targets
x_firstk = tensor.matrix('first_k')
x_lastk = tensor.matrix('last_k')
x_client = tensor.lmatrix('client')
y = tensor.vector('targets')
# Define the model
client_embed_table = LookupTable(length=n_clients, dim=dim_embed, name='lookup')
hidden_layer = MLP(activations=[Rectifier()],
dims=[(n_begin_pts + n_end_pts) * 2 + dim_embed, dim_hidden])
output_layer = Linear(input_dim=dim_hidden, output_dim=2)
# Create the Theano variables
client_embed = client_embed_table.apply(x_client).flatten(ndim=2)
inputs = tensor.concatenate([x_firstk, x_lastk, client_embed], axis=1)
hidden = hidden_layer.apply(inputs)
outputs = output_layer.apply(hidden)
# Calculate the cost
cost = (outputs - y).norm(2, axis=1).mean()
# Initialization
client_embed_table.weights_init = IsotropicGaussian(0.001)
hidden_layer.weights_init = IsotropicGaussian(0.01)
hidden_layer.biases_init = Constant(0.001)
output_layer.weights_init = IsotropicGaussian(0.001)
output_layer.biases_init = Constant(0.001)
client_embed_table.initialize()
hidden_layer.initialize()
output_layer.initialize()
# Load the training and test data
train = data.train_data
stream = DataStream(train)
train_stream = Batch(stream, iteration_scheme=ConstantScheme(batch_size))
# valid = data.valid_data
# stream = DataStream(valid)
# valid_stream = Batch(stream, iteration_scheme=ConstantScheme(batch_size))
valid_stream = train_stream
# Training
cg = ComputationGraph(cost)
algorithm = GradientDescent(
cost=cost,
# step_rule=AdaDelta(decay_rate=0.5),
step_rule=Scale(learning_rate=learning_rate),
params=cg.parameters)
extensions=[DataStreamMonitoring([cost], valid_stream,
prefix='valid',
every_n_batches=100),
Printing(every_n_batches=100),
Dump('ngram_blocks_model', every_n_batches=100),
LoadFromDump('ngram_blocks_model')]
main_loop = MainLoop(
model=Model([cost]),
data_stream=train_stream,
algorithm=algorithm,
extensions=extensions)
main_loop.run()
if __name__ == "__main__":
logging.basicConfig(level=logging.INFO)
main()