#!/usr/bin/env python2
# Separate the training set into a Training Valid and Test set
import os
import sys
import importlib
import cPickle
import h5py
import numpy
import theano
import data
from data.hdf5 import TaxiDataset
from error import hdist
native_fields = {
'trip_id': 'S19',
'call_type': numpy.int8,
'origin_call': numpy.int32,
'origin_stand': numpy.int8,
'taxi_id': numpy.int16,
'timestamp': numpy.int32,
'day_type': numpy.int8,
'missing_data': numpy.bool,
'latitude': data.Polyline,
'longitude': data.Polyline,
}
all_fields = {
'path_len': numpy.int16,
'cluster': numpy.int16,
'destination_latitude': numpy.float32,
'destination_longitude': numpy.float32,
'travel_time': numpy.int32,
}
all_fields.update(native_fields)
def cut_me_baby(train, cuts, excl={}):
dset = {}
cuts.sort()
cut_id = 0
for i in xrange(data.train_size):
if i%10000==0 and i!=0:
print >> sys.stderr, 'cut: {:d} done'.format(i)
if i in excl:
continue
time = train['timestamp'][i]
latitude = train['latitude'][i]
longitude = train['longitude'][i]
if len(latitude) == 0:
continue
end_time = time + 15 * (len(latitude) - 1)
while cuts[cut_id] < time:
if cut_id >= len(cuts)-1:
return dset
cut_id += 1
if end_time < cuts[cut_id]:
continue
else:
dset[i] = (cuts[cut_id] - time) / 15 + 1
return dset
def make_tvt(test_cuts_name, valid_cuts_name, outpath):
trainset = TaxiDataset('train')
traindata = trainset.get_data(None, slice(0, trainset.num_examples))
idsort = traindata[trainset.sources.index('timestamp')].argsort()
traindata = dict(zip(trainset.sources, (t[idsort] for t in traindata)))
print >> sys.stderr, 'test cut begin'
test_cuts = importlib.import_module('.%s' % test_cuts_name, 'data.cuts').cuts
test = cut_me_baby(traindata, test_cuts)
print >> sys.stderr, 'valid cut begin'
valid_cuts = importlib.import_module('.%s' % valid_cuts_name, 'data.cuts').cuts
valid = cut_me_baby(traindata, valid_cuts, test)
test_size = len(test)
valid_size = len(valid)
train_size = data.train_size - test_size - valid_size
print ' set | size | ratio'
print ' ----- | ------- | -----'
print ' train | {:>7d} | {:>5.3f}'.format(train_size, float(train_size)/data.train_size)
print ' valid | {:>7d} | {:>5.3f}'.format(valid_size, float(valid_size)/data.train_size)
print ' test | {:>7d} | {:>5.3f}'.format(test_size , float(test_size )/data.train_size)
with open(os.path.join(data.path, 'arrival-clusters.pkl'), 'r') as f:
clusters = cPickle.load(f)
print >> sys.stderr, 'compiling cluster assignment function'
latitude = theano.tensor.scalar('latitude')
longitude = theano.tensor.scalar('longitude')
coords = theano.tensor.stack(latitude, longitude).dimshuffle('x', 0)
parent = theano.tensor.argmin(hdist(clusters, coords))
cluster = theano.function([latitude, longitude], parent)
print >> sys.stderr, 'preparing hdf5 data'
hdata = {k: numpy.empty(shape=(data.train_size,), dtype=v) for k, v in all_fields.iteritems()}
train_i = 0
valid_i = train_size
test_i = train_size + valid_size
print >> sys.stderr, 'write: begin'
for idtraj in xrange(data.train_size):
if idtraj%10000==0 and idtraj!=0:
print >> sys.stderr, 'write: {:d} done'.format(idtraj)
in_test = idtraj in test
in_valid = not in_test and idtraj in valid
in_train = not in_test and not in_valid
if idtraj in test:
i = test_i
test_i += 1
elif idtraj in valid:
i = valid_i
valid_i += 1
else:
i = train_i
train_i += 1
trajlen = len(traindata['latitude'][idtraj])
if trajlen == 0:
hdata['destination_latitude'] = data.train_gps_mean[0]
hdata['destination_longitude'] = data.train_gps_mean[1]
else:
hdata['destination_latitude'] = traindata['latitude'][idtraj][-1]
hdata['destination_longitude'] = traindata['longitude'][idtraj][-1]
hdata['travel_time'] = trajlen
for field in native_fields:
val = traindata[field][idtraj]
if field in ['latitude', 'longitude']:
if in_test:
val = val[:test[idtraj]]
elif in_valid:
val = val[:valid[idtraj]]
hdata[field][i] = val
plen = len(hdata['latitude'][i])
hdata['path_len'][i] = plen
hdata['cluster'][i] = -1 if plen==0 else cluster(hdata['latitude'][i][0], hdata['longitude'][i][0])
print >> sys.stderr, 'write: end'
print >> sys.stderr, 'preparing split array'
split_array = numpy.empty(len(all_fields)*3, dtype=numpy.dtype([
('split', 'a', 64),
('source', 'a', 21),
('start', numpy.int64, 1),
('stop', numpy.int64, 1),
('indices', h5py.special_dtype(ref=h5py.Reference)),
('available', numpy.bool, 1),
('comment', 'a', 1)]))
flen = len(all_fields)
for i, field in enumerate(all_fields):
split_array[i]['split'] = 'train'.encode('utf8')
split_array[i+flen]['split'] = 'valid'.encode('utf8')
split_array[i+2*flen]['split'] = 'test'.encode('utf8')
split_array[i]['start'] = 0
split_array[i]['stop'] = train_size
split_array[i+flen]['start'] = train_size
split_array[i+flen]['stop'] = train_size + valid_size
split_array[i+2*flen]['start'] = train_size + valid_size
split_array[i+2*flen]['stop'] = train_size + valid_size + test_size
for d in [0, flen, 2*flen]:
split_array[i+d]['source'] = field.encode('utf8')
split_array[:]['indices'] = None
split_array[:]['available'] = True
split_array[:]['comment'] = '.'.encode('utf8')
print >> sys.stderr, 'writing hdf5 file'
file = h5py.File(outpath, 'w')
for k in all_fields.keys():
file.create_dataset(k, data=hdata[k], maxshape=(data.train_size,))
file.attrs['split'] = split_array
file.flush()
file.close()
if __name__ == '__main__':
if len(sys.argv) < 3 or len(sys.argv) > 4:
print >> sys.stderr, 'Usage: %s test_cutfile valid_cutfile [outfile]' % sys.argv[0]
sys.exit(1)
outpath = os.path.join(data.path, 'tvt.hdf5') if len(sys.argv) < 4 else sys.argv[3]
make_tvt(sys.argv[1], sys.argv[2], outpath)