diff options
author | Thomas Mesnard <thomas.mesnard@ens.fr> | 2015-12-23 11:14:57 +0100 |
---|---|---|
committer | Thomas Mesnard <thomas.mesnard@ens.fr> | 2015-12-23 11:14:57 +0100 |
commit | 08b63add743087ac0e2bbb7f739605642b3edc7b (patch) | |
tree | b253731214ab1c12fd7c8579fbdaad6aa99feebf | |
parent | 694964422eef7b835c1bfa3643fdee3bc1cffdd7 (diff) | |
download | pgm-ctc-08b63add743087ac0e2bbb7f739605642b3edc7b.tar.gz pgm-ctc-08b63add743087ac0e2bbb7f739605642b3edc7b.zip |
Add main.py
-rw-r--r-- | ctc.py | 8 | ||||
l--------- | ctc_test_data.pkl | 1 | ||||
-rw-r--r-- | main.py | 145 |
3 files changed, 150 insertions, 4 deletions
@@ -7,7 +7,7 @@ from blocks.bricks import Brick # L: OUTPUT_SEQUENCE_LENGTH # C: NUM_CLASSES class CTC(Brick): - def apply(l, probs, l_len=None, probs_mask=None): + def apply(self, l, probs, l_len=None, probs_mask=None): """ Numeration: Characters 0 to C-1 are true characters @@ -63,7 +63,7 @@ class CTC(Brick): alphabar = prev_alpha + prev_alpha1 alphabar = tensor.switch(l_case2, alphabar + prev_alpha2, alphabar) next_alpha = alpha_bar * p[tensor.arange(B)[:,None].repeat(S,axis=1).flatten(), l_blk.flatten()].reshape((B,S)) - next_alpha = tensor.switch(p_mask[:,None], next_alpha, prev_alpha] + next_alpha = tensor.switch(p_mask[:,None], next_alpha, prev_alpha) next_c = next_alpha.sum(axis=1) return next_alpha / next_c[:, None], next_c @@ -77,7 +77,7 @@ class CTC(Brick): return tensor.log(c).sum(axis=0) - def best_path_decoding(probs, probs_mask=None): + def best_path_decoding(self, probs, probs_mask=None): # probs is T x B x C+1 T = probs.shape[0] B = probs.shape[1] @@ -106,7 +106,7 @@ class CTC(Brick): return label[-1], label_length[-1] - def prefix_search(probs, probs_mask=None): + def prefix_search(self, probs, probs_mask=None): # Hard one... pass diff --git a/ctc_test_data.pkl b/ctc_test_data.pkl new file mode 120000 index 0000000..cd78721 --- /dev/null +++ b/ctc_test_data.pkl @@ -0,0 +1 @@ +mohammad/ctc_test_data.pkl
\ No newline at end of file @@ -0,0 +1,145 @@ +import theano +import numpy +from theano import tensor +from blocks.model import Model +from blocks.bricks import Linear, Tanh +from ctc import CTC +from blocks.initialization import IsotropicGaussian, Constant +from fuel.datasets import IterableDataset +from fuel.streams import DataStream +from blocks.algorithms import (GradientDescent, Scale, + StepClipping, CompositeRule) +from blocks.extensions.monitoring import TrainingDataMonitoring +from blocks.main_loop import MainLoop +from blocks.extensions import FinishAfter, Printing +from blocks.bricks.recurrent import SimpleRecurrent +from blocks.graph import ComputationGraph +try: + import cPickle as pickle +except: + import pickle + +floatX = theano.config.floatX + + +@theano.compile.ops.as_op(itypes=[tensor.lvector], + otypes=[tensor.lvector]) +def print_pred(y_hat): + blank_symbol = 4 + res = [] + for i, s in enumerate(y_hat): + if (s != blank_symbol) and (i == 0 or s != y_hat[i - 1]): + res += [s] + return numpy.asarray(res) + +n_epochs = 200 +x_dim = 4 +h_dim = 9 +num_classes = 4 + +with open("ctc_test_data.pkl", "rb") as pkl_file: + try: + data = pickle.load(pkl_file) + inputs = data['inputs'] + labels = data['labels'] + # from S x T x B x D to S x T x B + inputs_mask = numpy.max(data['mask_inputs'], axis=-1) + labels_mask = data['mask_labels'] + except: + data = pickle.load(pkl_file, encoding='bytes') + inputs = data[b'inputs'] + labels = data[b'labels'] + # from S x T x B x D to S x T x B + inputs_mask = numpy.max(data[b'mask_inputs'], axis=-1) + labels_mask = data[b'mask_labels'] + + + +print('Building model ...') + +# x : T x B x F +x = tensor.tensor3('x', dtype=floatX) +# x_mask : T x B +x_mask = tensor.matrix('x_mask', dtype=floatX) +# y : L x B +y = tensor.lmatrix('y') +# y_mask : L x B +y_mask = tensor.matrix('y_mask', dtype=floatX) + +# Linear bricks in +x_to_h = Linear(name='x_to_h', + input_dim=x_dim, + output_dim=h_dim) +x_transform = x_to_h.apply(x) + +# RNN bricks +rnn = SimpleRecurrent(activation=Tanh(), + dim=h_dim, name="rnn") +h = rnn.apply(x_transform) + +# Linear bricks out +h_to_o = Linear(name='h_to_o', + input_dim=h_dim, + output_dim=num_classes + 1) +h_transform = h_to_o.apply(h) + +# y_hat : T x B x C+1 +y_hat = tensor.nnet.softmax( + h_transform.reshape((-1, num_classes + 1)) +).reshape((h.shape[0], h.shape[1], -1)) +y_hat.name = 'y_hat' + +y_hat_mask = x_mask + +# Cost +cost = CTC().apply(y, y_hat, y_mask, y_hat_mask) +cost.name = 'CTC' + +# Initialization +for brick in (rnn, x_to_h, h_to_o): + brick.weights_init = IsotropicGaussian(0.01) + brick.biases_init = Constant(0) + brick.initialize() + +print('Bulding DataStream ...') +dataset = IterableDataset({'x': inputs, + 'x_mask': inputs_mask, + 'y': labels, + 'y_mask': labels_mask}) +stream = DataStream(dataset) + +print('Bulding training process...') +algorithm = GradientDescent(cost=cost, + parameters=ComputationGraph(cost).parameters, + step_rule=CompositeRule([StepClipping(10.0), + Scale(0.02)])) +monitor_cost = TrainingDataMonitoring([cost], + prefix="train", + after_epoch=True) + +# sample number to monitor +sample = 8 + +y_hat_max_path = print_pred(tensor.argmax(y_hat[:, sample, :], axis=1)) +y_hat_max_path.name = 'Viterbi' +monitor_output = TrainingDataMonitoring([y_hat_max_path], + prefix="y_hat", + every_n_epochs=1) + +length = tensor.sum(y_mask[:, sample]).astype('int32') +tar = y[:length, sample].astype('int32') +tar.name = '_Target_Seq' +monitor_target = TrainingDataMonitoring([tar], + prefix="y", + every_n_epochs=1) + +model = Model(cost) +main_loop = MainLoop(data_stream=stream, algorithm=algorithm, + extensions=[monitor_cost, monitor_output, + monitor_target, + FinishAfter(after_n_epochs=n_epochs), + Printing()], + model=model) + +print('Starting training ...') +main_loop.run() |