diff options
author | Thomas Mesnard <thomas.mesnard@ens.fr> | 2016-03-01 00:27:15 +0100 |
---|---|---|
committer | Thomas Mesnard <thomas.mesnard@ens.fr> | 2016-03-02 09:28:39 +0100 |
commit | f31caf61be87850f3afcd367d6eb9521b2f613da (patch) | |
tree | 2bcceeb702ef0d35bfdc925977797c40290b6966 /model | |
download | deepmind-qa-f31caf61be87850f3afcd367d6eb9521b2f613da.tar.gz deepmind-qa-f31caf61be87850f3afcd367d6eb9521b2f613da.zip |
Initial commit
Diffstat (limited to 'model')
-rw-r--r-- | model/__init__.py | 0 | ||||
-rw-r--r-- | model/attentive_reader.py | 152 | ||||
-rw-r--r-- | model/deep_bidir_lstm.py | 109 | ||||
-rw-r--r-- | model/deep_lstm.py | 99 |
4 files changed, 360 insertions, 0 deletions
diff --git a/model/__init__.py b/model/__init__.py new file mode 100644 index 0000000..e69de29 --- /dev/null +++ b/model/__init__.py diff --git a/model/attentive_reader.py b/model/attentive_reader.py new file mode 100644 index 0000000..682e48d --- /dev/null +++ b/model/attentive_reader.py @@ -0,0 +1,152 @@ +import theano +from theano import tensor +import numpy + +from blocks.bricks import Tanh, Softmax, Linear, MLP, Identity, Rectifier +from blocks.bricks.lookup import LookupTable +from blocks.bricks.recurrent import LSTM + +from blocks.filter import VariableFilter +from blocks.roles import WEIGHT +from blocks.graph import ComputationGraph, apply_dropout, apply_noise + +def make_bidir_lstm_stack(seq, seq_dim, mask, sizes, skip=True, name=''): + bricks = [] + + curr_dim = [seq_dim] + curr_hidden = [seq] + + hidden_list = [] + for k, dim in enumerate(sizes): + fwd_lstm_ins = [Linear(input_dim=d, output_dim=4*dim, name='%s_fwd_lstm_in_%d_%d'%(name,k,l)) for l, d in enumerate(curr_dim)] + fwd_lstm = LSTM(dim=dim, activation=Tanh(), name='%s_fwd_lstm_%d'%(name,k)) + + bwd_lstm_ins = [Linear(input_dim=d, output_dim=4*dim, name='%s_bwd_lstm_in_%d_%d'%(name,k,l)) for l, d in enumerate(curr_dim)] + bwd_lstm = LSTM(dim=dim, activation=Tanh(), name='%s_bwd_lstm_%d'%(name,k)) + + bricks = bricks + [fwd_lstm, bwd_lstm] + fwd_lstm_ins + bwd_lstm_ins + + fwd_tmp = sum(x.apply(v) for x, v in zip(fwd_lstm_ins, curr_hidden)) + bwd_tmp = sum(x.apply(v) for x, v in zip(bwd_lstm_ins, curr_hidden)) + fwd_hidden, _ = fwd_lstm.apply(fwd_tmp, mask=mask) + bwd_hidden, _ = bwd_lstm.apply(bwd_tmp[::-1], mask=mask[::-1]) + hidden_list = hidden_list + [fwd_hidden, bwd_hidden] + if skip: + curr_hidden = [seq, fwd_hidden, bwd_hidden[::-1]] + curr_dim = [seq_dim, dim, dim] + else: + curr_hidden = [fwd_hidden, bwd_hidden[::-1]] + curr_dim = [dim, dim] + + return bricks, hidden_list + +class Model(): + def __init__(self, config, vocab_size): + question = tensor.imatrix('question') + question_mask = tensor.imatrix('question_mask') + context = tensor.imatrix('context') + context_mask = tensor.imatrix('context_mask') + answer = tensor.ivector('answer') + candidates = tensor.imatrix('candidates') + candidates_mask = tensor.imatrix('candidates_mask') + + bricks = [] + + question = question.dimshuffle(1, 0) + question_mask = question_mask.dimshuffle(1, 0) + context = context.dimshuffle(1, 0) + context_mask = context_mask.dimshuffle(1, 0) + + # Embed questions and cntext + embed = LookupTable(vocab_size, config.embed_size, name='question_embed') + bricks.append(embed) + + qembed = embed.apply(question) + cembed = embed.apply(context) + + qlstms, qhidden_list = make_bidir_lstm_stack(qembed, config.embed_size, question_mask.astype(theano.config.floatX), + config.question_lstm_size, config.question_skip_connections, 'q') + clstms, chidden_list = make_bidir_lstm_stack(cembed, config.embed_size, context_mask.astype(theano.config.floatX), + config.ctx_lstm_size, config.ctx_skip_connections, 'ctx') + bricks = bricks + qlstms + clstms + + # Calculate question encoding (concatenate layer1) + if config.question_skip_connections: + qenc_dim = 2*sum(config.question_lstm_size) + qenc = tensor.concatenate([h[-1,:,:] for h in qhidden_list], axis=1) + else: + qenc_dim = 2*config.question_lstm_size[-1] + qenc = tensor.concatenate([h[-1,:,:] for h in qhidden_list[-2:]], axis=1) + qenc.name = 'qenc' + + # Calculate context encoding (concatenate layer1) + if config.ctx_skip_connections: + cenc_dim = 2*sum(config.ctx_lstm_size) + cenc = tensor.concatenate(chidden_list, axis=2) + else: + cenc_dim = 2*config.ctx_lstm_size[-1] + cenc = tensor.concatenate(chidden_list[-2:], axis=2) + cenc.name = 'cenc' + + # Attention mechanism MLP + attention_mlp = MLP(dims=config.attention_mlp_hidden + [1], + activations=config.attention_mlp_activations[1:] + [Identity()], + name='attention_mlp') + attention_qlinear = Linear(input_dim=qenc_dim, output_dim=config.attention_mlp_hidden[0], name='attq') + attention_clinear = Linear(input_dim=cenc_dim, output_dim=config.attention_mlp_hidden[0], use_bias=False, name='attc') + bricks += [attention_mlp, attention_qlinear, attention_clinear] + layer1 = Tanh().apply(attention_clinear.apply(cenc.reshape((cenc.shape[0]*cenc.shape[1], cenc.shape[2]))) + .reshape((cenc.shape[0],cenc.shape[1],config.attention_mlp_hidden[0])) + + attention_qlinear.apply(qenc)[None, :, :]) + layer1.name = 'layer1' + att_weights = attention_mlp.apply(layer1.reshape((layer1.shape[0]*layer1.shape[1], layer1.shape[2]))) + att_weights.name = 'att_weights_0' + att_weights = att_weights.reshape((layer1.shape[0], layer1.shape[1])) + att_weights.name = 'att_weights' + + attended = tensor.sum(cenc * tensor.nnet.softmax(att_weights.T).T[:, :, None], axis=0) + attended.name = 'attended' + + # Now we can calculate our output + out_mlp = MLP(dims=[cenc_dim + qenc_dim] + config.out_mlp_hidden + [config.n_entities], + activations=config.out_mlp_activations + [Identity()], + name='out_mlp') + bricks += [out_mlp] + probs = out_mlp.apply(tensor.concatenate([attended, qenc], axis=1)) + probs.name = 'probs' + + is_candidate = tensor.eq(tensor.arange(config.n_entities, dtype='int32')[None, None, :], + tensor.switch(candidates_mask, candidates, -tensor.ones_like(candidates))[:, :, None]).sum(axis=1) + probs = tensor.switch(is_candidate, probs, -1000 * tensor.ones_like(probs)) + + # Calculate prediction, cost and error rate + pred = probs.argmax(axis=1) + cost = Softmax().categorical_cross_entropy(answer, probs).mean() + error_rate = tensor.neq(answer, pred).mean() + + # Apply dropout + cg = ComputationGraph([cost, error_rate]) + if config.w_noise > 0: + noise_vars = VariableFilter(roles=[WEIGHT])(cg) + cg = apply_noise(cg, noise_vars, config.w_noise) + if config.dropout > 0: + cg = apply_dropout(cg, qhidden_list + chidden_list, config.dropout) + [cost_reg, error_rate_reg] = cg.outputs + + # Other stuff + cost_reg.name = cost.name = 'cost' + error_rate_reg.name = error_rate.name = 'error_rate' + + self.sgd_cost = cost_reg + self.monitor_vars = [[cost_reg], [error_rate_reg]] + self.monitor_vars_valid = [[cost], [error_rate]] + + # Initialize bricks + for brick in bricks: + brick.weights_init = config.weights_init + brick.biases_init = config.biases_init + brick.initialize() + + + +# vim: set sts=4 ts=4 sw=4 tw=0 et : diff --git a/model/deep_bidir_lstm.py b/model/deep_bidir_lstm.py new file mode 100644 index 0000000..1e000c6 --- /dev/null +++ b/model/deep_bidir_lstm.py @@ -0,0 +1,109 @@ +import theano +from theano import tensor +import numpy + +from blocks.bricks import Tanh, Softmax, Linear, MLP, Identity, Rectifier +from blocks.bricks.lookup import LookupTable +from blocks.bricks.recurrent import LSTM + +from blocks.filter import VariableFilter +from blocks.roles import WEIGHT +from blocks.graph import ComputationGraph, apply_dropout, apply_noise + +class Model(): + def __init__(self, config, vocab_size): + question = tensor.imatrix('question') + question_mask = tensor.imatrix('question_mask') + answer = tensor.ivector('answer') + candidates = tensor.imatrix('candidates') + candidates_mask = tensor.imatrix('candidates_mask') + + bricks = [] + + + # set time as first dimension + question = question.dimshuffle(1, 0) + question_mask = question_mask.dimshuffle(1, 0) + + # Embed questions + embed = LookupTable(vocab_size, config.embed_size, name='question_embed') + bricks.append(embed) + qembed = embed.apply(question) + + # Create and apply LSTM stack + curr_dim = [config.embed_size] + curr_hidden = [qembed] + + hidden_list = [] + for k, dim in enumerate(config.lstm_size): + fwd_lstm_ins = [Linear(input_dim=d, output_dim=4*dim, name='fwd_lstm_in_%d_%d'%(k,l)) for l, d in enumerate(curr_dim)] + fwd_lstm = LSTM(dim=dim, activation=Tanh(), name='fwd_lstm_%d'%k) + + bwd_lstm_ins = [Linear(input_dim=d, output_dim=4*dim, name='bwd_lstm_in_%d_%d'%(k,l)) for l, d in enumerate(curr_dim)] + bwd_lstm = LSTM(dim=dim, activation=Tanh(), name='bwd_lstm_%d'%k) + + bricks = bricks + [fwd_lstm, bwd_lstm] + fwd_lstm_ins + bwd_lstm_ins + + fwd_tmp = sum(x.apply(v) for x, v in zip(fwd_lstm_ins, curr_hidden)) + bwd_tmp = sum(x.apply(v) for x, v in zip(bwd_lstm_ins, curr_hidden)) + fwd_hidden, _ = fwd_lstm.apply(fwd_tmp, mask=question_mask.astype(theano.config.floatX)) + bwd_hidden, _ = bwd_lstm.apply(bwd_tmp[::-1], mask=question_mask.astype(theano.config.floatX)[::-1]) + hidden_list = hidden_list + [fwd_hidden, bwd_hidden] + if config.skip_connections: + curr_hidden = [qembed, fwd_hidden, bwd_hidden[::-1]] + curr_dim = [config.embed_size, dim, dim] + else: + curr_hidden = [fwd_hidden, bwd_hidden[::-1]] + curr_dim = [dim, dim] + + # Create and apply output MLP + if config.skip_connections: + out_mlp = MLP(dims=[2*sum(config.lstm_size)] + config.out_mlp_hidden + [config.n_entities], + activations=config.out_mlp_activations + [Identity()], + name='out_mlp') + bricks.append(out_mlp) + + probs = out_mlp.apply(tensor.concatenate([h[-1,:,:] for h in hidden_list], axis=1)) + else: + out_mlp = MLP(dims=[2*config.lstm_size[-1]] + config.out_mlp_hidden + [config.n_entities], + activations=config.out_mlp_activations + [Identity()], + name='out_mlp') + bricks.append(out_mlp) + + probs = out_mlp.apply(tensor.concatenate([h[-1,:,:] for h in hidden_list[-2:]], axis=1)) + + is_candidate = tensor.eq(tensor.arange(config.n_entities, dtype='int32')[None, None, :], + tensor.switch(candidates_mask, candidates, -tensor.ones_like(candidates))[:, :, None]).sum(axis=1) + probs = tensor.switch(is_candidate, probs, -1000 * tensor.ones_like(probs)) + + # Calculate prediction, cost and error rate + pred = probs.argmax(axis=1) + cost = Softmax().categorical_cross_entropy(answer, probs).mean() + error_rate = tensor.neq(answer, pred).mean() + + # Apply dropout + cg = ComputationGraph([cost, error_rate]) + if config.w_noise > 0: + noise_vars = VariableFilter(roles=[WEIGHT])(cg) + cg = apply_noise(cg, noise_vars, config.w_noise) + if config.dropout > 0: + cg = apply_dropout(cg, hidden_list, config.dropout) + [cost_reg, error_rate_reg] = cg.outputs + + # Other stuff + cost_reg.name = cost.name = 'cost' + error_rate_reg.name = error_rate.name = 'error_rate' + + self.sgd_cost = cost_reg + self.monitor_vars = [[cost_reg], [error_rate_reg]] + self.monitor_vars_valid = [[cost], [error_rate]] + + # Initialize bricks + for brick in bricks: + brick.weights_init = config.weights_init + brick.biases_init = config.biases_init + brick.initialize() + + + +# vim: set sts=4 ts=4 sw=4 tw=0 et : diff --git a/model/deep_lstm.py b/model/deep_lstm.py new file mode 100644 index 0000000..02cc034 --- /dev/null +++ b/model/deep_lstm.py @@ -0,0 +1,99 @@ +import theano +from theano import tensor +import numpy + +from blocks.bricks import Tanh, Softmax, Linear, MLP, Identity, Rectifier +from blocks.bricks.lookup import LookupTable +from blocks.bricks.recurrent import LSTM + +from blocks.graph import ComputationGraph, apply_dropout + + +class Model(): + def __init__(self, config, vocab_size): + question = tensor.imatrix('question') + question_mask = tensor.imatrix('question_mask') + answer = tensor.ivector('answer') + candidates = tensor.imatrix('candidates') + candidates_mask = tensor.imatrix('candidates_mask') + + bricks = [] + + + # set time as first dimension + question = question.dimshuffle(1, 0) + question_mask = question_mask.dimshuffle(1, 0) + + # Embed questions + embed = LookupTable(vocab_size, config.embed_size, name='question_embed') + bricks.append(embed) + qembed = embed.apply(question) + + # Create and apply LSTM stack + curr_dim = config.embed_size + curr_hidden = qembed + + hidden_list = [] + for k, dim in enumerate(config.lstm_size): + lstm_in = Linear(input_dim=curr_dim, output_dim=4*dim, name='lstm_in_%d'%k) + lstm = LSTM(dim=dim, activation=Tanh(), name='lstm_%d'%k) + bricks = bricks + [lstm_in, lstm] + + tmp = lstm_in.apply(curr_hidden) + hidden, _ = lstm.apply(tmp, mask=question_mask.astype(theano.config.floatX)) + hidden_list.append(hidden) + if config.skip_connections: + curr_hidden = tensor.concatenate([hidden, qembed], axis=2) + curr_dim = dim + config.embed_size + else: + curr_hidden = hidden + curr_dim = dim + + # Create and apply output MLP + if config.skip_connections: + out_mlp = MLP(dims=[sum(config.lstm_size)] + config.out_mlp_hidden + [config.n_entities], + activations=config.out_mlp_activations + [Identity()], + name='out_mlp') + bricks.append(out_mlp) + + probs = out_mlp.apply(tensor.concatenate([h[-1,:,:] for h in hidden_list], axis=1)) + else: + out_mlp = MLP(dims=[config.lstm_size[-1]] + config.out_mlp_hidden + [config.n_entities], + activations=config.out_mlp_activations + [Identity()], + name='out_mlp') + bricks.append(out_mlp) + + probs = out_mlp.apply(hidden_list[-1][-1,:,:]) + + is_candidate = tensor.eq(tensor.arange(config.n_entities, dtype='int32')[None, None, :], + tensor.switch(candidates_mask, candidates, -tensor.ones_like(candidates))[:, :, None]).sum(axis=1) + probs = tensor.switch(is_candidate, probs, -1000 * tensor.ones_like(probs)) + + # Calculate prediction, cost and error rate + pred = probs.argmax(axis=1) + cost = Softmax().categorical_cross_entropy(answer, probs).mean() + error_rate = tensor.neq(answer, pred).mean() + + # Apply dropout + cg = ComputationGraph([cost, error_rate]) + if config.dropout > 0: + cg = apply_dropout(cg, hidden_list, config.dropout) + [cost_reg, error_rate_reg] = cg.outputs + + # Other stuff + cost_reg.name = cost.name = 'cost' + error_rate_reg.name = error_rate.name = 'error_rate' + + self.sgd_cost = cost_reg + self.monitor_vars = [[cost_reg], [error_rate_reg]] + self.monitor_vars_valid = [[cost], [error_rate]] + + # Initialize bricks + for brick in bricks: + brick.weights_init = config.weights_init + brick.biases_init = config.biases_init + brick.initialize() + + + +# vim: set sts=4 ts=4 sw=4 tw=0 et : |