import theano
from theano import tensor
import numpy
from blocks.bricks import Tanh, Softmax, Linear, MLP, Identity, Rectifier
from blocks.bricks.lookup import LookupTable
from blocks.bricks.recurrent import LSTM
from blocks.filter import VariableFilter
from blocks.roles import WEIGHT
from blocks.graph import ComputationGraph, apply_dropout, apply_noise
class Model():
def __init__(self, config, vocab_size):
question = tensor.imatrix('question')
question_mask = tensor.imatrix('question_mask')
answer = tensor.ivector('answer')
candidates = tensor.imatrix('candidates')
candidates_mask = tensor.imatrix('candidates_mask')
bricks = []
# set time as first dimension
question = question.dimshuffle(1, 0)
question_mask = question_mask.dimshuffle(1, 0)
# Embed questions
embed = LookupTable(vocab_size, config.embed_size, name='question_embed')
bricks.append(embed)
qembed = embed.apply(question)
# Create and apply LSTM stack
curr_dim = [config.embed_size]
curr_hidden = [qembed]
hidden_list = []
for k, dim in enumerate(config.lstm_size):
fwd_lstm_ins = [Linear(input_dim=d, output_dim=4*dim, name='fwd_lstm_in_%d_%d'%(k,l)) for l, d in enumerate(curr_dim)]
fwd_lstm = LSTM(dim=dim, activation=Tanh(), name='fwd_lstm_%d'%k)
bwd_lstm_ins = [Linear(input_dim=d, output_dim=4*dim, name='bwd_lstm_in_%d_%d'%(k,l)) for l, d in enumerate(curr_dim)]
bwd_lstm = LSTM(dim=dim, activation=Tanh(), name='bwd_lstm_%d'%k)
bricks = bricks + [fwd_lstm, bwd_lstm] + fwd_lstm_ins + bwd_lstm_ins
fwd_tmp = sum(x.apply(v) for x, v in zip(fwd_lstm_ins, curr_hidden))
bwd_tmp = sum(x.apply(v) for x, v in zip(bwd_lstm_ins, curr_hidden))
fwd_hidden, _ = fwd_lstm.apply(fwd_tmp, mask=question_mask.astype(theano.config.floatX))
bwd_hidden, _ = bwd_lstm.apply(bwd_tmp[::-1], mask=question_mask.astype(theano.config.floatX)[::-1])
hidden_list = hidden_list + [fwd_hidden, bwd_hidden]
if config.skip_connections:
curr_hidden = [qembed, fwd_hidden, bwd_hidden[::-1]]
curr_dim = [config.embed_size, dim, dim]
else:
curr_hidden = [fwd_hidden, bwd_hidden[::-1]]
curr_dim = [dim, dim]
# Create and apply output MLP
if config.skip_connections:
out_mlp = MLP(dims=[2*sum(config.lstm_size)] + config.out_mlp_hidden + [config.n_entities],
activations=config.out_mlp_activations + [Identity()],
name='out_mlp')
bricks.append(out_mlp)
probs = out_mlp.apply(tensor.concatenate([h[-1,:,:] for h in hidden_list], axis=1))
else:
out_mlp = MLP(dims=[2*config.lstm_size[-1]] + config.out_mlp_hidden + [config.n_entities],
activations=config.out_mlp_activations + [Identity()],
name='out_mlp')
bricks.append(out_mlp)
probs = out_mlp.apply(tensor.concatenate([h[-1,:,:] for h in hidden_list[-2:]], axis=1))
is_candidate = tensor.eq(tensor.arange(config.n_entities, dtype='int32')[None, None, :],
tensor.switch(candidates_mask, candidates, -tensor.ones_like(candidates))[:, :, None]).sum(axis=1)
probs = tensor.switch(is_candidate, probs, -1000 * tensor.ones_like(probs))
# Calculate prediction, cost and error rate
pred = probs.argmax(axis=1)
cost = Softmax().categorical_cross_entropy(answer, probs).mean()
error_rate = tensor.neq(answer, pred).mean()
# Apply dropout
cg = ComputationGraph([cost, error_rate])
if config.w_noise > 0:
noise_vars = VariableFilter(roles=[WEIGHT])(cg)
cg = apply_noise(cg, noise_vars, config.w_noise)
if config.dropout > 0:
cg = apply_dropout(cg, hidden_list, config.dropout)
[cost_reg, error_rate_reg] = cg.outputs
# Other stuff
cost_reg.name = cost.name = 'cost'
error_rate_reg.name = error_rate.name = 'error_rate'
self.sgd_cost = cost_reg
self.monitor_vars = [[cost_reg], [error_rate_reg]]
self.monitor_vars_valid = [[cost], [error_rate]]
# Initialize bricks
for brick in bricks:
brick.weights_init = config.weights_init
brick.biases_init = config.biases_init
brick.initialize()
# vim: set sts=4 ts=4 sw=4 tw=0 et :