1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
|
open Ast
open Lexing
open Typing
open Util
(* Locations *)
let string_of_position p =
Printf.sprintf "%s:%i:%i" p.pos_fname p.pos_lnum (p.pos_cnum - p.pos_bol)
let string_of_extent (p,q) =
if p.pos_fname = q.pos_fname then
if p.pos_lnum = q.pos_lnum then
if p.pos_cnum = q.pos_cnum then
Printf.sprintf "%s:%i.%i" p.pos_fname p.pos_lnum (p.pos_cnum - p.pos_bol)
else
Printf.sprintf "%s:%i.%i-%i" p.pos_fname p.pos_lnum (p.pos_cnum - p.pos_bol) (q.pos_cnum - q.pos_bol)
else
Printf.sprintf "%s:%i.%i-%i.%i" p.pos_fname p.pos_lnum (p.pos_cnum - p.pos_bol) q.pos_lnum (q.pos_cnum - q.pos_bol)
else
Printf.sprintf "%s:%i.%i-%s:%i.%i" p.pos_fname p.pos_lnum (p.pos_cnum - p.pos_bol) q.pos_fname q.pos_lnum (q.pos_cnum - q.pos_bol)
(* Operators *)
let string_of_unary_op = function
| AST_UPLUS -> "+"
| AST_UMINUS -> "-"
let string_of_binary_op = function
| AST_MUL -> "*"
| AST_DIV -> "/"
| AST_MOD -> "mod"
| AST_PLUS -> "+"
| AST_MINUS -> "-"
let string_of_binary_rel = function
| AST_EQ -> "="
| AST_NE -> "<>"
| AST_LT -> "<"
| AST_LE -> "<="
| AST_GT -> ">"
| AST_GE -> ">="
let string_of_binary_bool = function
| AST_AND -> "and"
| AST_OR -> "or"
let unary_precedence = 99
let binary_op_precedence = function
| AST_MUL| AST_DIV| AST_MOD-> 51
| AST_PLUS | AST_MINUS -> 50
let binary_rel_precedence = function
| AST_EQ | AST_NE -> 41
| AST_LT | AST_LE | AST_GT | AST_GE -> 40
let binary_bool_precedence = function
| AST_OR -> 31
| AST_AND -> 30
let arrow_precedence = 20
let if_precedence = 10
let expr_precedence = function
| AST_unary (_, _) | AST_pre(_, _) | AST_not(_) -> unary_precedence
| AST_binary(op, _, _) -> binary_op_precedence op
| AST_binary_rel(r, _, _) -> binary_rel_precedence r
| AST_binary_bool(r, _, _) -> binary_bool_precedence r
| AST_arrow(_, _) -> arrow_precedence
| AST_if(_, _, _) -> if_precedence
| _ -> 100
(* utility *)
let print_id_ext fmt (i, _) =
Format.pp_print_string fmt i
(* types *)
let rec string_of_typ = function
| AST_TINT -> "int"
| AST_TBOOL -> "bool"
| AST_TREAL -> "real"
(* expressions *)
let print_id fmt v =
Format.pp_print_string fmt v
let rec print_expr fmt e =
match e with
| AST_unary (op,(e1,_)) ->
Format.pp_print_string fmt (string_of_unary_op op);
if expr_precedence e1 <= expr_precedence e
then Format.fprintf fmt "(%a)" print_expr e1
else Format.fprintf fmt "%a" print_expr e1
| AST_not (e1,_) ->
Format.pp_print_string fmt "not ";
if expr_precedence e1 <= expr_precedence e
then Format.fprintf fmt "(%a)" print_expr e1
else Format.fprintf fmt "%a" print_expr e1
| AST_pre ((e1,_), _) ->
Format.pp_print_string fmt "pre ";
if expr_precedence e1 <= expr_precedence e
then Format.fprintf fmt "(%a)" print_expr e1
else Format.fprintf fmt "%a" print_expr e1
| AST_cast ((e1,_), ty) ->
Format.fprintf fmt "%s (%a)"
(string_of_typ ty) print_expr e1;
| AST_binary (op,(e1,_),(e2,_)) ->
if expr_precedence e1 < expr_precedence e
then Format.fprintf fmt "(%a) " print_expr e1
else Format.fprintf fmt "%a " print_expr e1;
Format.pp_print_string fmt (string_of_binary_op op);
if expr_precedence e2 <= expr_precedence e
then Format.fprintf fmt " (%a)" print_expr e2
else Format.fprintf fmt " %a" print_expr e2
| AST_binary_rel (op,(e1,_),(e2,_)) ->
if expr_precedence e1 < expr_precedence e
then Format.fprintf fmt "(%a) " print_expr e1
else Format.fprintf fmt "%a " print_expr e1;
Format.pp_print_string fmt (string_of_binary_rel op);
if expr_precedence e2 <= expr_precedence e
then Format.fprintf fmt " (%a)" print_expr e2
else Format.fprintf fmt " %a" print_expr e2
| AST_binary_bool (op,(e1,_),(e2,_)) ->
if expr_precedence e1 <= expr_precedence e
then Format.fprintf fmt "(%a) " print_expr e1
else Format.fprintf fmt "%a " print_expr e1;
Format.pp_print_string fmt (string_of_binary_bool op);
if expr_precedence e2 <= expr_precedence e
then Format.fprintf fmt " (%a)" print_expr e2
else Format.fprintf fmt " %a" print_expr e2
| AST_arrow ((e1,_),(e2,_)) ->
if expr_precedence e1 < expr_precedence e
then Format.fprintf fmt "(%a) " print_expr e1
else Format.fprintf fmt "%a " print_expr e1;
Format.pp_print_string fmt "->";
if expr_precedence e2 <= expr_precedence e
then Format.fprintf fmt " (%a)" print_expr e2
else Format.fprintf fmt " %a" print_expr e2
| AST_int_const (i,_) -> Format.pp_print_string fmt i
| AST_real_const (i,_) -> Format.pp_print_string fmt i
| AST_bool_const b -> Format.pp_print_bool fmt b
| AST_if((c,_), (t,_), (e,_)) ->
Format.fprintf fmt
"if %a then %a else %a"
print_expr c print_expr t print_expr e
| AST_identifier (v,_) -> print_id fmt v
| AST_idconst (v,_) -> print_id fmt v
| AST_instance ((i,_),l, _) ->
Format.fprintf fmt "%a(%a)"
print_id i (print_list print_expr ", ") (List.map fst l)
| AST_tuple x ->
Format.fprintf fmt "(%a)"
(print_list print_expr ", ") (List.map fst x)
(* equations *)
let indent ind = ind^" "
let rec print_vars ind fmt = function
| [] -> ()
| v ->
Format.fprintf fmt "%svar" ind;
List.iter (fun d -> Format.fprintf fmt " %a;" print_var_decl d) v;
Format.fprintf fmt "@\n";
and print_var_decl fmt (pr, i, ty) =
Format.fprintf fmt "%s%s: %s"
(if pr then "probe " else "")
i
(string_of_typ ty)
and print_body ind fmt body =
Format.fprintf fmt "%slet@\n%a%stel@\n"
ind (print_block ind) body ind
and print_eqn ind fmt = function
| AST_assign (l,(e,_)) ->
Format.fprintf fmt "%s%a = %a;@\n"
ind (print_list print_id_ext ", ") l print_expr e
| AST_assume((i, _), (e, _)) ->
Format.fprintf fmt "%sassume %s: %a;@\n"
ind i print_expr e
| AST_guarantee((i, _), (e, _)) ->
Format.fprintf fmt "%sguarantee %s: %a;@\n"
ind i print_expr e
| AST_automaton a -> print_automaton ind fmt a
| AST_activate a -> print_activate ind fmt a
and print_activate ind fmt (x, r) =
Format.fprintf fmt "%sactivate@\n" ind;
print_activate_if (indent ind) fmt x;
Format.fprintf fmt "%sreturns %a;@\n" ind (print_list print_id ", ") r
and print_activate_if ind fmt = function
| AST_activate_if((c, _), t, e) ->
Format.fprintf fmt "%sif %a then@\n" ind print_expr c;
print_activate_if (indent ind) fmt t;
Format.fprintf fmt "%selse@\n" ind;
print_activate_if (indent ind) fmt e
| AST_activate_body(b) ->
print_vars ind fmt b.act_locals;
print_body ind fmt b.body
and print_automaton ind fmt (n, sts, r) =
Format.fprintf fmt "%sautomaton %s@\n" ind n;
List.iter (print_state (indent ind) fmt) sts;
Format.fprintf fmt "%sreturns %a;@\n" ind (print_list print_id ", ") r
and print_state ind fmt (st, _) =
Format.fprintf fmt "%s%sstate %s@\n"
ind (if st.initial then "initial " else "") st.st_name;
print_vars ind fmt st.st_locals;
print_body ind fmt st.body;
if st.until <> [] then begin
Format.fprintf fmt "%suntil@\n" ind;
List.iter (fun ((e, _),(s, _), reset) ->
Format.fprintf fmt "%sif %a %s %s;@\n" (indent ind) print_expr e (if reset then "restart" else "resume") s)
st.until
end
and print_block ind fmt b =
List.iter (fun (bb,_) -> print_eqn (indent ind) fmt bb) b
(* declarations *)
and print_node_decl fmt (d : node_decl) =
Format.fprintf fmt "node %s(%a) returns(%a)@\n"
d.n_name
(print_list print_var_decl "; ") d.args
(print_list print_var_decl "; ") d.ret;
print_vars "" fmt d.var;
print_body "" fmt d.body
let print_const_decl fmt (d : const_decl) =
Format.fprintf fmt
"const %s: %s = %a@\n@\n"
d.c_name (string_of_typ d.typ)
print_expr (fst d.value)
let print_toplevel fmt = function
| AST_node_decl (n, _) -> print_node_decl fmt n
| AST_const_decl (c, _) -> print_const_decl fmt c
let print_prog fmt p =
List.iter (print_toplevel fmt) p
(* Typed variable *)
let print_type fmt = function
| TInt -> Format.fprintf fmt "int"
| TReal -> Format.fprintf fmt "real"
| TEnum e -> Format.fprintf fmt "enum @[<h>{ %a }@]" (print_list print_id ", ") e
let print_typed_var fmt (p, id, t) =
Format.fprintf fmt "%s%s: %a" (if p then "probe " else "") id print_type t
|