1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
|
open Ast
open Util
open Ast_util
open Formula
open Typing
open Interpret (* used for constant evaluation ! *)
(* Transform SCADE program to logical formula. *)
(* node * prefix * equations *)
type scope = id * id * eqn ext list
type transform_data = {
rp : rooted_prog;
consts : I.value VarMap.t;
(* future : the automata state *)
}
(* Numerical types / Enumerated types *)
type ne_expr =
| EE of enum_expr
| NE of num_expr
(* f_of_neexpr :
transform_data -> (string, string) -> (ne_expr list -> bool_expr) -> expr -> bool_expr
*)
let rec f_of_neexpr td (node, prefix) where expr =
let sub = f_of_neexpr td (node, prefix) in
let le = loc_error (snd expr) in
match fst expr with
(* ident *)
| AST_identifier(id, _) ->
let qid = node^"/"^id in
begin match type_var td.rp node id with
| TInt | TReal -> where [NE (NIdent qid)]
| TEnum _ -> where [EE (EIdent qid)]
end
| AST_idconst(id, _) ->
begin let x = VarMap.find ("cst/"^id) td.consts in
try where [NE (NIntConst (I.as_int x))]
with _ -> try where [NE (NRealConst (I.as_real x))]
with _ -> try where [EE (EItem (if I.as_bool x then bool_true else bool_false))]
with _ -> le error "Invalid data for supposedly numerical/boolean constant."
end
(* numerical *)
| AST_int_const(i, _) -> where [NE(NIntConst(int_of_string i))]
| AST_real_const(r, _) -> where [NE(NRealConst(float_of_string r))]
| AST_bool_const b -> where [EE(EItem (if b then bool_true else bool_false))]
| AST_unary(op, e) ->
sub (function
| [NE x] -> where [NE(NUnary(op, x))]
| _ -> le invalid_arity "Unary operator") e
| AST_binary(op, a, b) ->
sub (function
| [NE x] ->
sub (function
| [NE y] -> where [NE(NBinary(op, x, y))]
| _ -> le invalid_arity "binary operator") b
| _ -> le invalid_arity "binary operator") a
(* temporal *)
| AST_pre(expr, id) ->
let typ = type_expr td.rp node expr in
where
(List.mapi
(fun i t -> let x = id^"."^(string_of_int i) in
match t with
| TInt | TReal -> NE(NIdent x)
| TEnum _ -> EE(EIdent x))
typ)
| AST_arrow(a, b) ->
if List.mem (node^"/") td.rp.init_scope
then
f_or
(f_and (f_e_eq (EIdent (node^"/"^prefix^"init")) (EItem bool_true))
(sub where a))
(f_and (f_e_eq (EIdent (node^"/"^prefix^"init")) (EItem bool_false))
(sub where b))
else
f_or
(f_and (BRel(AST_EQ, NIdent(node^"/"^prefix^"time"), NIntConst 0))
(sub where a))
(f_and (BRel(AST_GE, NIdent(node^"/"^prefix^"time"), NIntConst 1))
(sub where b))
(* other *)
| AST_if(c, a, b) ->
f_or
(f_and (f_of_expr td (node, prefix) c) (sub where a))
(f_and (BNot(f_of_expr td (node, prefix) c)) (sub where b))
| AST_instance ((f, _), args, nid) ->
let (n, _) = find_node_decl td.rp.p f in
where
(List.map
(fun (_, id, t) -> let x = node^"/"^nid^"/"^id in
match t with
| AST_TINT | AST_TREAL -> NE(NIdent x)
| _ -> EE(EIdent x))
n.ret)
| AST_tuple l ->
let rec rl l x = match l with
| [] -> where x
| p::q ->
sub (fun y -> rl q (x@y)) p
in rl l []
(* boolean values treated as enumerated types *)
| _ when type_expr td.rp node expr = [bool_type] ->
f_or
(f_and (f_of_expr td (node, prefix) expr) (where [EE (EItem bool_true)]))
(f_and (f_of_expr td (node, prefix) (AST_not(expr), snd expr))
(where [EE (EItem bool_false)]))
| _ -> le type_error "Expected numerical/enumerated value"
(*
f_of_expr :
transform_data -> (string, string) -> expr -> bool_expr
f_of_bexpr :
transform_data -> (string, string) -> (bool_expr -> bool_expr) -> expr -> bool_expr
*)
and f_of_bexpr td (node, prefix) where expr =
let sub = f_of_bexpr td (node, prefix) in
match fst expr with
| AST_bool_const b -> where (BConst b)
| AST_binary_bool(AST_AND, a, b) -> f_and (sub where a) (sub where b)
| AST_binary_bool(AST_OR, a, b) -> f_or (sub where a) (sub where b)
| AST_not(a) -> BNot(sub where a)
| AST_binary_rel(rel, a, b) ->
where
(f_of_neexpr td (node, prefix)
(function
| [NE x; NE y] -> BRel(rel, x, y)
| [EE x; EE y] ->
let eop = match rel with
| AST_EQ -> E_EQ
| AST_NE -> E_NE
| _ -> type_error "Invalid operator on enumerated values."
in BEnumCons(eop, x, y)
| _ -> invalid_arity "Binary operator")
(AST_tuple [a; b], snd expr))
(* Temporal *)
| AST_arrow(a, b) ->
f_or
(f_and (BRel(AST_EQ, NIdent(node^"/"^prefix^"time"), NIntConst 0))
(sub where a))
(f_and (BRel(AST_GE, NIdent(node^"/"^prefix^"time"), NIntConst 1))
(sub where b))
(* Enumerations... *)
| _ when type_expr td.rp node expr = [bool_type] ->
let ff = function
| [EE x] ->
f_or
(f_and (f_e_eq x (EItem bool_true)) (where (BConst true)))
(f_and (f_e_eq x (EItem bool_false)) (where (BConst false)))
| _ -> assert false
in
f_of_neexpr td (node, prefix) ff expr
| _ -> type_error "Expected boolean value."
and f_of_expr td (node, prefix) expr =
f_of_bexpr td (node, prefix) (fun x -> x) expr
(*
Translate program into one big formula
*)
let rec f_of_scope active td (node, prefix, eqs) assume_guarantees =
let expr_eq e eq =
let instance_eq (_, id, eqs, args) =
let eq = f_of_scope active td (node^"/"^id, "", eqs) assume_guarantees in
if active then
List.fold_left (fun eq ((_,argname,_), expr) ->
let eq_arg = f_of_neexpr td (node, prefix) (function
| [NE v] -> BRel(AST_EQ, NIdent(node^"/"^id^"/"^argname), v)
| [EE v] -> f_e_eq (EIdent(node^"/"^id^"/"^argname)) v
| _ -> invalid_arity "in argument")
expr
in f_and eq eq_arg)
eq args
else
eq
in
let eq = List.fold_left (fun x i -> f_and (instance_eq i) x)
eq (extract_instances td.rp.p e)
in
let pre_expr (id, expr) =
if active then
f_of_neexpr td (node, prefix) (fun elist ->
list_fold_op f_and
(List.mapi
(fun i v -> let x = ("N"^id^"."^(string_of_int i)) in
match v with
| NE v -> BRel(AST_EQ, NIdent x, v)
| EE v -> f_e_eq (EIdent x) v)
elist))
expr
else
let typ = type_expr td.rp node expr in
list_fold_op f_and
(List.mapi
(fun i t -> let x = string_of_int i in
match t with
| TInt | TReal -> BRel(AST_EQ, NIdent("N"^id^"."^x), NIdent (id^"."^x))
| TEnum _ -> f_e_eq (EIdent("N"^id^"."^x)) (EIdent (id^"."^x)))
typ)
in
List.fold_left (fun x i -> f_and (pre_expr i) x)
eq (extract_pre e)
in
let do_eq eq = match fst eq with
| AST_assign(ids, e) ->
let assign_eq =
if active then
f_of_neexpr td (node, prefix)
(fun vs ->
let rels =
List.map2 (fun (id, _) -> function
| NE v -> BRel(AST_EQ, NIdent (node^"/"^id), v)
| EE v -> f_e_eq (EIdent (node^"/"^id)) v)
ids vs
in
list_fold_op f_and rels)
e
else
BConst true
in
expr_eq e assign_eq
| AST_assume (_, e) ->
let assume_eq =
if active then
f_of_expr td (node, prefix) e
else
BConst true
in
expr_eq e assume_eq
| AST_guarantee (_, e) ->
let guarantee_eq =
if active && assume_guarantees then
f_of_expr td (node, prefix) e
else
BConst true
in
expr_eq e guarantee_eq
| AST_activate (b, _) ->
let rec cond_eq = function
| AST_activate_body b -> BConst true
| AST_activate_if(c, a, b) ->
f_and (expr_eq c (BConst true))
(f_and (cond_eq a) (cond_eq b))
in
let rec do_tree_act = function
| AST_activate_body b ->
f_of_scope true td (node, b.act_id^".", b.body) assume_guarantees
| AST_activate_if(c, a, b) ->
f_or
(f_and (f_of_expr td (node, prefix) c)
(f_and (do_tree_act a) (do_tree_inact b)))
(f_and (BNot(f_of_expr td (node, prefix) c))
(f_and (do_tree_act b) (do_tree_inact a)))
and do_tree_inact = function
| AST_activate_body b ->
f_of_scope false td (node, b.act_id^".", b.body) assume_guarantees
| AST_activate_if(_, a, b) ->
f_and (do_tree_inact a) (do_tree_inact b)
in
f_and (cond_eq b) (if active then do_tree_act b else do_tree_inact b)
| AST_automaton _ -> not_implemented "f_of_scope do_eq automaton"
in
let time_incr_eq =
if active then
f_and
(if not (List.mem (node^"/") td.rp.no_time_scope)
then BRel(AST_EQ, NIdent("N"^node^"/"^prefix^"time"),
NBinary(AST_PLUS, NIntConst 1, NIdent(node^"/"^prefix^"time")))
else BConst true)
(f_and
(if List.mem (node^"/") td.rp.act_scope
then f_e_eq (EIdent(node^"/"^prefix^"act")) (EItem bool_true)
else BConst true)
(if List.mem (node^"/") td.rp.init_scope
then f_e_eq (EIdent("N"^node^"/"^prefix^"init")) (EItem bool_false)
else BConst true))
else
f_and
(if not (List.mem (node^"/") td.rp.no_time_scope)
then BRel(AST_EQ,
NIdent("N"^node^"/"^prefix^"time"),
NIdent(node^"/"^prefix^"time"))
else BConst true)
(f_and
(if List.mem (node^"/") td.rp.act_scope
then f_e_eq (EIdent(node^"/"^prefix^"act")) (EItem bool_false)
else BConst true)
(if List.mem (node^"/") td.rp.init_scope
then f_e_eq (EIdent("N"^node^"/"^prefix^"init"))
(EIdent (node^"/"^prefix^"init"))
else BConst true))
in
List.fold_left f_and
time_incr_eq
(List.map do_eq eqs)
and f_of_prog rp assume_guarantees =
let td = {
rp = rp;
consts = I.consts rp;
} in
f_of_scope true td td.rp.root_scope assume_guarantees
(*
Translate init state into a formula
*)
let rec init_f_of_scope rp (node, prefix, eqs) =
let expr_eq e =
let instance_eq (_, id, eqs, args) =
init_f_of_scope rp (node^"/"^id, "", eqs)
in
List.fold_left (fun x i -> f_and (instance_eq i) x)
(BConst true) (extract_instances rp.p e)
in
let do_eq eq = match fst eq with
| AST_assign(_, e) | AST_assume(_, e) | AST_guarantee(_, e) ->
expr_eq e
| AST_activate (b, _) ->
let rec cond_eq = function
| AST_activate_body b ->
init_f_of_scope rp (node, b.act_id^".", b.body)
| AST_activate_if(c, a, b) ->
f_and (expr_eq c)
(f_and (cond_eq a) (cond_eq b))
in
cond_eq b
| AST_automaton _ -> not_implemented "f_of_scope do_eq automaton"
in
let time_eq =
f_and
(if not (List.mem (node^"/") rp.no_time_scope)
then
BRel(AST_EQ,
NIdent(node^"/"^prefix^"time"),
NIntConst 0)
else BConst true)
(if List.mem (node^"/") rp.init_scope
then
f_e_eq (EIdent(node^"/"^prefix^"init")) (EItem bool_true)
else BConst true)
in
List.fold_left f_and time_eq (List.map do_eq eqs)
and init_f_of_prog rp =
init_f_of_scope rp rp.root_scope
(*
Get expressions for guarantee violation
*)
let rec g_of_scope td (node, prefix, eqs) cond =
let expr_g e =
let instance_g (_, id, eqs, args) =
g_of_scope td (node^"/"^id, "", eqs) cond
in
List.fold_left (fun x i -> (instance_g i) @ x)
[] (extract_instances td.rp.p e)
in
let do_eq eq = match fst eq with
| AST_assign(_, e) | AST_assume(_, e) ->
expr_g e
| AST_guarantee((id, _), e) ->
(id, f_and cond (f_of_expr td (node, prefix) (AST_not(e), snd e)))
:: (expr_g e)
| AST_activate (b, _) ->
let rec cond_g cond = function
| AST_activate_body b ->
g_of_scope td (node, b.act_id^".", b.body) cond
| AST_activate_if(c, a, b) ->
(cond_g (f_and cond (f_of_expr td (node, prefix) c)) a) @
(cond_g (f_and cond (f_of_expr td (node, prefix) (AST_not(c), snd c))) b) @
(expr_g c)
in
cond_g cond b
| AST_automaton _ -> not_implemented "g_of_scope automaton"
in
List.fold_left (@) [] (List.map do_eq eqs)
and guarantees_of_prog rp =
let td = {
rp = rp;
consts = I.consts rp;
} in
g_of_scope td rp.root_scope (BConst true)
|