summaryrefslogtreecommitdiff
path: root/abstract/intervals_domain.ml
blob: 22ea60b318c7897775127ae55e250d222388c23b (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
open Value_domain

(*
  Value domain for representing one interval, doing operations on
  such representations, etc.

  Restricted implementation, only support integers.
*)

module VD : VALUE_DOMAIN = struct
    type t = itv

    (* utilities *)
    let bound_leq a b =   (* a <= b ? *)
        match a, b with
        | MInf, _ | _, PInf -> true
        | Int a, Int b -> a <= b
        | x, y -> x = y

    let bound_lt a b = not (bound_leq b a)    (* a < b *)

    let bound_add a b =
        match a, b with
        | MInf, Int a | Int a, MInf -> MInf
        | PInf, Int a | Int a, PInf -> PInf
        | MInf, MInf -> MInf
        | PInf, PInf -> PInf
        | Int a, Int b -> Int (a + b)
        | _ -> assert false
    let bound_mul a b =
        match a, b with
        | PInf, Int(x) | Int(x), PInf ->
            if x > 0 then PInf
            else if x < 0 then MInf
            else Int 0
        | MInf, Int(x) | Int(x), MInf ->
            if x < 0 then PInf
            else if x > 0 then MInf
            else Int 0
        | Int(x), Int(y) -> Int(x * y)
        | MInf, PInf | PInf, MInf -> MInf
        | MInf, MInf | PInf, PInf -> PInf
    let bound_div a b =
        match a, b with
        | _, PInf | _, MInf -> Int 0
        | PInf, Int i ->
          if i < 0 then MInf
          else PInf
        | MInf, Int i ->
          if i < 0 then PInf
          else MInf
        | Int i, Int j ->
          assert (j != 0);
          Int (i / j)

    let bound_min a b = match a, b with
        | MInf, _ | _, MInf -> MInf
        | Int a, Int b -> Int (min a b)
        | Int a, PInf -> Int a
        | PInf, Int a -> Int a
        | PInf, PInf -> PInf
    let bound_max a b = match a, b with
        | PInf, _ | _, PInf -> PInf
        | Int a, Int b -> Int (max a b)
        | Int a, MInf | MInf, Int a -> Int a
        | MInf, MInf -> MInf

    let bound_neg = function
        | PInf -> MInf
        | MInf -> PInf
        | Int i -> Int (- i)
  
    let bound_abs a = bound_max a (bound_neg a)

    (* implementation *)
    let top = Itv(MInf, PInf)
    let bottom = Bot
    let const i = Itv(Int i, Int i)
    let itv i j =
        if i <= j then Itv(Int i, Int j) else Bot
    let to_itv x = x
    let as_const = function
      | Itv(Int i, Int j) when i = j -> Some i
      | _ -> None

    let subset a b = match a, b with
        | Bot, _ -> true
        | _, Bot -> false
        | Itv(a, b), Itv(c, d) -> bound_leq c a && bound_leq b d

    let join a b = match a, b with
        | Bot, x | x, Bot -> x
        | Itv(a, b), Itv(c, d) ->
            Itv(bound_min a c, bound_max b d)

    let meet a b = match a, b with
        | Bot, x | x, Bot -> Bot
        | Itv(a, b), Itv(c, d) ->
          let u, v = bound_max a c, bound_min b d in
          if bound_leq u v
            then Itv(u, v)
            else Bot

    let widen a b = match a, b with
        | x, Bot | Bot, x -> x
        | Itv(a, b), Itv(c, d) ->
          let lb =
            if bound_lt c a then
                (if bound_leq (Int 0) c then Int 0 else MInf)
              else a
          in
          let ub = 
            if bound_lt b d then
                (if bound_leq d (Int 0) then Int 0 else PInf)
              else b
          in
          Itv(lb, ub)

    let neg = function
        | Bot -> Bot
        | Itv(a, b) -> Itv(bound_neg b, bound_neg a)
    let add a b = match a, b with
        | Bot, _ | _, Bot -> Bot
        | Itv(a, b), Itv(c, d) ->
            Itv(bound_add a c, bound_add b d)
    let sub a b = match a, b with
        | Bot, _ | _, Bot -> Bot
        | Itv(a, b), Itv(c, d) ->
            Itv(bound_add a (bound_neg d), bound_add b (bound_neg c))
    let mul a b = match a, b with
        | Bot, _ | _, Bot -> Bot
        | Itv(a, b), Itv(c, d) ->
            Itv(
                (bound_min (bound_min (bound_mul a c) (bound_mul a d))
                            (bound_min (bound_mul b c) (bound_mul b d))),
                (bound_max (bound_max (bound_mul a c) (bound_mul a d))
                            (bound_max (bound_mul b c) (bound_mul b d))))
    let div a b = match a, b with
        | Bot, _ -> Bot
        | Itv(a, b), q ->
          let p1 = match meet q (Itv(Int 1, PInf)) with
            | Bot -> Bot
            | Itv(c, d) ->
              Itv(min (bound_div a c) (bound_div a d),
                  max (bound_div b c) (bound_div b d))
          in
          let p2 = match meet q (Itv(MInf, Int (-1))) with
            | Bot -> Bot
            | Itv(c, d) ->
              Itv(min (bound_div b c) (bound_div b d),
                  max (bound_div a c) (bound_div a d))
          in
          join p1 p2
    let rem a b = match a, b with
        | Bot, _ | _, Bot -> Bot
        | Itv(a, b), Itv(c, d) ->
          Itv(Int 0, bound_max (bound_abs c) (bound_abs d))

    let leq a b = match a, b with
        | Bot, _ | _, Bot -> Bot, Bot
        | Itv(a, b), Itv(c, d) ->
          if not (bound_leq a d)
            then Bot, Bot
            else Itv(a, bound_min b d), Itv(bound_max a c, d)

    let to_string = string_of_itv

end