1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
|
open Ast
open Ast_util
open Formula
open Typing
open Util
open Num_domain
open Abs_interp
module I (ND : NUMERICAL_ENVIRONMENT_DOMAIN) : sig
val do_prog : cmdline_opt -> rooted_prog -> unit
val test : unit -> unit
end = struct
(* **********************
EDD Domain
********************** *)
type item = string
type evar = id * item list
type nvar = id * bool
type varenv = {
evars : evar list;
nvars : nvar list;
ev_order : (id, int) Hashtbl.t;
}
type edd =
| DBot
| DVal of int
| DChoice of id * (item * edd) list
type edd_v = {
ve : varenv;
root : edd;
leaves : (int, ND.t) Hashtbl.t;
(* add here eventual annotations *)
}
(*
edd_print : Format.formatter -> edd_v -> unit
*)
let edd_print fmt v =
let ids = Hashtbl.create 12 in
let n = ref 0 in
let rec mkid = function
| DChoice(_, l) as x ->
if not (Hashtbl.mem ids x) then begin
incr n; Hashtbl.add ids x !n;
List.iter (fun (_, x) -> mkid x) l
end
| _ -> ()
in mkid v.root;
let print_n fmt = function
| DBot -> Format.fprintf fmt "⊥";
| DVal i -> Format.fprintf fmt "v%d" i;
| DChoice _ as x -> Format.fprintf fmt "n%d" (Hashtbl.find ids x)
in
Format.fprintf fmt "Root: %a@." print_n v.root;
for id = 1 to !n do
let c = ref None in
Hashtbl.iter (fun u i -> if i = id then c := Some u) ids;
let x = match !c with | Some x -> x | None -> assert false in
match x with
| DChoice (var, l) ->
let p fmt (c, l) = Format.fprintf fmt "%s → %a" c print_n l in
Format.fprintf fmt "n%d: %a ? @[<hov>%a@]@."
id Formula_printer.print_id var
(print_list p ", ") l
| _ -> assert false
done;
Hashtbl.iter
(fun id v -> Format.fprintf fmt "v%d: %a@." id ND.print v)
v.leaves
(*
edd_bot : varenv -> edd_v
*)
let edd_bot ve = { ve; root = DBot; leaves = Hashtbl.create 1 }
(*
edd_top : evar list -> nvar list -> edd_v
*)
let edd_top ve =
let leaves = Hashtbl.create 1 in
Hashtbl.add leaves 0 (ND.top ve.nvars);
{ ve; root = DVal 0; leaves }
(*
edd_of_cons : varenv -> enum_cons -> edd_v
*)
let edd_of_cons ve (op, vid, r) =
let op = match op with | E_EQ -> (=) | E_NE -> (<>) in
let leaves = Hashtbl.create 1 in
Hashtbl.add leaves 0 (ND.top ve.nvars);
let root = match r with
| EItem x ->
DChoice(vid,
List.map (fun v -> if op v x then v, DVal 0 else v, DBot)
(List.assoc vid ve.evars))
| EIdent vid2 ->
let a, b =
if Hashtbl.find ve.ev_order vid < Hashtbl.find ve.ev_order vid2
then vid, vid2
else vid2, vid
in
let nb x =
DChoice(b,
List.map (fun v -> if op v x then v, DVal 0 else v, DBot)
(List.assoc b ve.evars))
in
DChoice(a, List.map (fun x -> x, nb x) (List.assoc a ve.evars))
in
{ ve; root; leaves }
(*
edd_join : edd_v -> edd_v -> edd_v
*)
let edd_join a b =
let ve = a.ve in
let leaves = Hashtbl.copy a.leaves in
let n = ref 0 in
Hashtbl.iter (fun i _ -> if i > !n then n := i) leaves;
let get_leaf x =
let id = ref None in
Hashtbl.iter (fun i v -> if ND.eq v x then id := Some i) leaves;
begin match !id with
| Some i -> DVal i
| None ->
incr n;
Hashtbl.add leaves !n x;
DVal (!n)
end
in
let memo_bcopy = Hashtbl.create 12 in
let rec bcopy nb =
try Hashtbl.find memo_bcopy nb
with Not_found -> let r =
match nb with
| DBot -> DBot
| DVal i -> get_leaf (Hashtbl.find b.leaves i)
| DChoice (v, x) ->
DChoice(v, List.map (fun (c, n) -> c, bcopy n) x)
in Hashtbl.add memo_bcopy nb r; r
in
let memo = Hashtbl.create 12 in
let rec f (na, nb) =
try Hashtbl.find memo (na, nb)
with Not_found -> let r =
let dq v l =
let _, x0 = List.hd l in
if List.exists (fun (_, x) -> x <> x0) l
then DChoice(v, l)
else x0
in
match na, nb with
| DBot, x -> bcopy x
| x, DBot -> x
| DChoice(va, la), DChoice(vb, lb) when va = vb ->
let kl = List.map2
(fun (ta, ba) (tb, bb) -> assert (ta = tb);
ta, f (ba, bb))
la lb
in
dq va kl
| DChoice(va, la), DChoice(vb, lb) ->
let v, kl =
if Hashtbl.find ve.ev_order va < Hashtbl.find ve.ev_order vb then
va, List.map (fun (k, ca) -> k, f (ca, nb)) la
else
vb, List.map (fun (k, cb) -> k, f (na, cb)) lb
in
dq v kl
| DChoice(va, la), _ ->
let kl = List.map (fun (k, ca) -> k, f (ca, nb)) la in
dq va kl
| _, DChoice(vb, lb) ->
let kl = List.map (fun (k, cb) -> k, f (na, cb)) lb in
dq vb kl
| DVal u, DVal v ->
let x = ND.join (Hashtbl.find a.leaves u) (Hashtbl.find b.leaves v) in
get_leaf x
in Hashtbl.add memo (na, nb) r; r
in
{ leaves; ve; root = f (a.root, b.root) }
(*
edd_meet : edd_v -> edd_v -> edd_v
*)
let edd_meet a b =
let ve = a.ve in
let n = ref 0 in
let leaves = Hashtbl.create 12 in
let get_leaf x =
if ND.is_bot x then DBot else begin
let id = ref None in
Hashtbl.iter (fun i v -> if ND.eq v x then id := Some i) leaves;
match !id with
| Some i -> DVal i
| None ->
incr n;
Hashtbl.add leaves !n x;
DVal (!n)
end
in
let memo = Hashtbl.create 12 in
let rec f (na, nb) =
try Hashtbl.find memo (na, nb)
with Not_found -> let r =
let dq v l =
let _, x0 = List.hd l in
if List.exists (fun (_, x) -> x <> x0) l
then DChoice(v, l)
else x0
in
match na, nb with
| DBot, _ | _, DBot -> DBot
| DChoice(va, la), DChoice(vb, lb) when va = vb ->
let kl = List.map2
(fun (ta, ba) (tb, bb) -> assert (ta = tb);
ta, f (ba, bb))
la lb
in
dq va kl
| DChoice(va, la), DChoice(vb, lb) ->
let v, kl =
if Hashtbl.find ve.ev_order va < Hashtbl.find ve.ev_order vb then
va, List.map (fun (k, ca) -> k, f (ca, nb)) la
else
vb, List.map (fun (k, cb) -> k, f (na, cb)) lb
in
dq v kl
| DChoice(va, la), _ ->
let kl = List.map (fun (k, ca) -> k, f (ca, nb)) la in
dq va kl
| _, DChoice(vb, lb) ->
let kl = List.map (fun (k, cb) -> k, f (na, cb)) lb in
dq vb kl
| DVal u, DVal v ->
let x = ND.meet (Hashtbl.find a.leaves u) (Hashtbl.find b.leaves v) in
get_leaf x
in Hashtbl.add memo (na, nb) r; r
in
{ leaves; ve; root = f (a.root, b.root) }
(*
edd_apply_ncl : edd_v -> num_cons list -> edd_v
*)
let edd_apply_ncl v ncl =
let ve = v.ve in
let n = ref 0 in
let leaves = Hashtbl.create 12 in
let get_leaf x =
if ND.is_bot x then DBot else begin
let id = ref None in
Hashtbl.iter (fun i v -> if ND.eq v x then id := Some i) leaves;
match !id with
| Some i -> DVal i
| None ->
incr n;
Hashtbl.add leaves !n x;
DVal (!n)
end
in
let memo = Hashtbl.create 12 in
let rec f n =
try Hashtbl.find memo n
with Not_found -> let r =
match n with
| DBot -> DBot
| DVal i -> get_leaf (ND.apply_cl (Hashtbl.find v.leaves i) ncl)
| DChoice(var, l) ->
let l = List.map (fun (k, v) -> k, f v) l in
let _, x0 = List.hd l in
if List.exists (fun (_, x) -> x <> x0) l
then DChoice(var, l)
else x0
in Hashtbl.add memo n r; r
in
{ leaves; ve; root = f v.root }
(*
edd_apply_cl : edd_v -> conslist -> edd_v
*)
let rec edd_apply_cl v (ec, nc, r) =
let v = List.fold_left
(fun v cons -> edd_meet v (edd_of_cons v.ve cons))
v ec in
match r with
| CLTrue ->
edd_apply_ncl v nc
| CLFalse -> edd_bot v.ve
| CLAnd (a, b) ->
let v = edd_apply_cl v ([], nc, a) in
edd_apply_cl v ([], nc, b)
| CLOr((eca, nca, ra), (ecb, ncb, rb)) ->
edd_join (edd_apply_cl v (eca, nc@nca, ra))
(edd_apply_cl v (ecb, nc@ncb, rb))
(*
edd_eq : edd_v -> edd_v -> bool
*)
let edd_eq a b =
let memo = Hashtbl.create 12 in
let rec f (na, nb) =
try Hashtbl.find memo (na, nb)
with Not_found -> let r =
match na, nb with
| DBot, DBot -> true
| DVal i, DVal j ->
ND.eq (Hashtbl.find a.leaves i) (Hashtbl.find b.leaves j)
| DChoice(va, la), DChoice(vb, lb) when va = vb ->
List.for_all2 (fun (ca, na) (cb, nb) -> assert (ca = cb); f (na, nb))
la lb
| _ -> false
in Hashtbl.add memo (na, nb) r; r
in f (a.root, b.root)
let test () =
let ve = {
evars = ["x", ["tt"; "ff"]; "y", ["tt"; "ff"]; "z", ["tt"; "ff"]];
nvars = [];
ev_order = Hashtbl.create 2 } in
Hashtbl.add ve.ev_order "x" 0;
Hashtbl.add ve.ev_order "y" 1;
Hashtbl.add ve.ev_order "z" 2;
let u = edd_of_cons ve (E_EQ, "x", EIdent "y") in
Format.printf "x = y : @[%a@]@." edd_print u;
let v = edd_of_cons ve (E_NE, "y", EIdent "z") in
Format.printf "y != z : @[%a@]@." edd_print v;
let w = edd_meet u v in
Format.printf "x = y && y != z : @[%a@]@." edd_print w;
let t = edd_join u v in
Format.printf "x = y || y != z : @[%a@]@." edd_print t
(* ******************************
Abstract interpret
******************************* *)
type env = {
rp : rooted_prog;
opt : cmdline_opt;
ve : varenv;
(* program expressions *)
f : bool_expr;
cl : conslist;
f_g : bool_expr;
cl_g : conslist;
guarantees : (id * bool_expr) list;
(* abstract interpretation *)
cycle : (id * id * typ) list; (* s'(x) = s(y) *)
forget : (id * typ) list; (* s'(x) not specified *)
mutable data : edd_v;
}
(*
extract_linked_evars : conslist -> (id * id) list
Extract all pairs of enum-type variable (x, y) appearing in an
equation like x = y or x != y
A couple may appear several times in the result.
*)
let rec extract_linked_evars_root (ecl, _, r) =
let v_ecl = List.fold_left
(fun c (_, x, v) -> match v with
| EIdent y -> (x, y)::c
| _ -> c)
[] ecl
in
v_ecl
let rec extract_linked_evars(ecl, _, r) =
let v_ecl = List.fold_left
(fun c (_, x, v) -> match v with
| EIdent y -> (x, y)::c
| _ -> c)
[] ecl
in
let v_ecl2 =
let q = List.fold_left
(fun c (_, x, v) -> match v with
| EItem _ -> x::c | _ -> c)
[] ecl
in
match q with
| [x; y] -> [x, y]
| [x; y; z] -> [x, y; y, z; z, x]
| _ -> []
in
let rec aux = function
| CLTrue | CLFalse -> []
| CLAnd(a, b) -> aux a @ aux b
| CLOr(a, b) -> extract_linked_evars a @ extract_linked_evars b
in
v_ecl @ v_ecl2 @ aux r
(*
scope_constrict : id list -> (id * id) list -> id list
Orders the variable in the first argument such as to minimize the
sum of the distance between the position of two variables appearing in
a couple of the second list. (minimisation is approximate, this is
an heuristic so that the EDD will not explode in size when expressing
equations such as x = y && u = v && a != b)
*)
let scope_constrict vars cp_id =
let var_i = Array.of_list vars in
let n = Array.length var_i in
let i_var = Hashtbl.create n in
Array.iteri (fun i v -> Hashtbl.add i_var v i) var_i;
let cp_i = List.map
(fun (x, y) -> Hashtbl.find i_var x, Hashtbl.find i_var y)
cp_id in
let eval i =
let r = Array.make n (-1) in
Array.iteri (fun pos var -> r.(var) <- pos) i;
Array.iteri (fun _ x -> assert (x <> (-1))) r;
List.fold_left
(fun s (x, y) -> s + abs (r.(x) - r.(y)))
0 cp_i
in
let best = Array.make n 0 in
for i = 0 to n-1 do best.(i) <- i done;
let usefull = ref true in
Format.printf "SCA";
while !usefull do
Format.printf ".@?";
usefull := false;
let try_s x =
if eval x < eval best then begin
Array.blit x 0 best 0 n;
usefull := true
end
in
for i = 0 to n-1 do
let tt = Array.copy best in
(* move item i at beginning *)
let temp = tt.(i) in
for j = i downto 1 do tt.(j) <- tt.(j-1) done;
tt.(0) <- temp;
(* try all positions *)
try_s tt;
for j = 1 to n-1 do
let temp = tt.(j-1) in
tt.(j-1) <- tt.(j);
tt.(j) <- temp;
try_s tt
done
done
done;
Format.printf "@.";
Array.to_list (Array.map (Array.get var_i) best)
(*
init_env : cmdline_opt -> rooted_prog -> env
*)
let init_env opt rp =
Format.printf "Vars: @[<hov>%a@]@.@."
(print_list Ast_printer.print_typed_var ", ")
rp.all_vars;
let enum_vars = List.fold_left
(fun v (_, id, t) -> match t with
| TEnum ch -> (id, ch)::v | _ -> v)
[] rp.all_vars in
let num_vars = List.fold_left
(fun v (_, id, t) -> match t with
| TInt -> (id, false)::v | TReal -> (id, true)::v | _ -> v)
[] rp.all_vars in
let init_f = Transform.init_f_of_prog rp in
Format.printf "Init formula: %a@.@." Formula_printer.print_expr init_f;
let init_cl = conslist_of_f init_f in
let guarantees = Transform.guarantees_of_prog rp in
Format.printf "Guarantees:@.";
List.iter (fun (id, f) ->
Format.printf " %s: %a@." id Formula_printer.print_expr f)
guarantees;
Format.printf "@.";
let f = Formula.eliminate_not (Transform.f_of_prog rp false) in
let f_g = Formula.eliminate_not (Transform.f_of_prog rp true) in
Format.printf "Cycle formula:@.%a@.@." Formula_printer.print_expr f;
let cl = Formula.conslist_of_f f in
let cl_g = Formula.conslist_of_f f_g in
(* calculate order for enumerated variables *)
let evars = List.map fst enum_vars in
let lv0 = List.map (fun x -> x, "N"^x)
(List.filter (fun x -> List.exists (fun y -> y = "N"^x) evars) evars) in
let lv1 = extract_linked_evars_root init_cl
@ extract_linked_evars_root cl_g in
let lv2 = extract_linked_evars init_cl @ extract_linked_evars cl_g in
let lv1 = uniq_sorted
(List.sort Pervasives.compare (List.map ord_couple lv1)) in
let lv2 = uniq_sorted
(List.sort Pervasives.compare (List.map ord_couple lv2)) in
let evars_ord = scope_constrict evars (lv0 @ lv1 @ lv2) in
let ev_order = Hashtbl.create (List.length evars) in
List.iteri (fun i x -> Hashtbl.add ev_order x i) evars_ord;
let ve = { evars = enum_vars; nvars = num_vars; ev_order } in
Format.printf "Order for variables: @[<hov>[%a]@]@."
(print_list Formula_printer.print_id ", ") evars_ord;
(* calculate cycle variables and forget variables *)
let cycle = List.fold_left
(fun q (_, id, ty) ->
if id.[0] = 'N' then
(String.sub id 1 (String.length id - 1), id, ty)::q
else q)
[] rp.all_vars
in
let forget = List.map (fun (_, id, ty) -> (id, ty))
(List.filter
(fun (_, id, _) ->
not (List.exists (fun (_, id2, _) -> id2 = "N"^id) rp.all_vars))
rp.all_vars)
in
(* calculate initial environment *)
let data = edd_apply_cl (edd_top ve) init_cl in
Format.printf "Init: @[<hov>%a@]@." edd_print data;
{ rp; opt; ve;
f; cl; f_g; cl_g; guarantees;
cycle; forget; data }
let do_prog opt rp =
let e = init_env opt rp in
let d2 = edd_apply_cl e.data e.cl in
Format.printf " -> @[<hov>%a@]@." edd_print d2
end
|