1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
|
open Ast
open Ast_util
open Formula
open Typing
open Util
open Num_domain
open Abs_interp
exception Top
exception Found_int of int
module I (ND : NUMERICAL_ENVIRONMENT_DOMAIN) : sig
val do_prog : cmdline_opt -> rooted_prog -> unit
val test : unit -> unit
end = struct
(* **********************
EDD Domain
********************** *)
type item = string
type evar = id * item list
type nvar = id * bool
type varenv = {
evars : evar list;
nvars : nvar list;
ev_order : (id, int) Hashtbl.t;
}
type edd =
| DBot
| DTop
| DVal of int * (bool * int) (* bool*int : new case ? iterations before widen ? *)
| DChoice of int * id * (item * edd) list
type edd_v = {
ve : varenv;
root : edd;
leaves : (int, ND.t) Hashtbl.t;
(* add here eventual annotations *)
}
(*
Utility functions for memoization
memo : (('a -> 'b) -> 'a -> 'b) -> 'a -> 'b
-> (int * 'a) -> (int * 'b)
memo2 : (('a -> 'b -> 'c) -> 'a -> 'b -> 'c)
-> 'a -> 'b -> 'c
Where 'a = 'b = 'c = edd, but it can be adapted.
*)
let key = function
| DBot -> 0
| DTop -> 1
| DVal (i, _) -> 2 * i + 2
| DChoice(i, _, _) -> 2 * i + 3
let memo f =
let memo = Hashtbl.create 12 in
let rec ff v =
try Hashtbl.find memo (key v)
with Not_found ->
let r = f ff v in
Hashtbl.add memo (key v) r; r
in ff
let memo2 f =
let memo = Hashtbl.create 12 in
let rec ff v1 v2 =
try Hashtbl.find memo (key v1, key v2)
with Not_found ->
let r = f ff v1 v2 in
Hashtbl.add memo (key v1, key v2) r; r
in ff
let edd_node_eq = function
| DBot, DBot -> true
| DTop, DTop -> true
| DVal (i, _), DVal (j, _) when i = j -> true
| DChoice(i, _, _), DChoice(j, _, _) when i = j -> true
| _ -> false
let new_node_fun () =
let nc = ref 0 in
let node_memo = Hashtbl.create 12 in
fun v l ->
let _, x0 = List.hd l in
if List.exists (fun (_, x) -> not (edd_node_eq (x, x0))) l
then begin
let k = (v, List.map (fun (a, b) -> a, key b) l) in
let n =
try Hashtbl.find node_memo k
with _ -> (incr nc; Hashtbl.add node_memo k !nc; !nc)
in
DChoice(n, v, l)
end else x0
let get_leaf_fun_st () =
let leaves = Hashtbl.create 12 in
let lc = ref 0 in
let get_leaf st x =
if ND.is_top x then DTop else
if ND.is_bot x then DBot else
try
Hashtbl.iter (fun i v -> if ND.eq v x then raise (Found_int i)) leaves;
incr lc;
Hashtbl.add leaves !lc x;
DVal (!lc, st)
with Found_int i -> DVal (i, st)
in leaves, get_leaf
let get_leaf_fun () =
let leaves, get_leaf = get_leaf_fun_st () in
leaves, get_leaf (false, 0)
let rank ve = function
| DChoice(_, x, _) -> Hashtbl.find ve.ev_order x
| _ -> 10000000 (* HYPOTHESIS : program will never have more than
that number of variables *)
(*
edd_print : Format.formatter -> edd_v -> unit
*)
let edd_print fmt v =
let max_v = ref 0 in
let print_nodes = Queue.create () in
let a = Hashtbl.create 12 in
let node_pc = Hashtbl.create 12 in
let f f_rec = function
| DChoice(_, _, l) ->
List.iter
(fun (_, c) -> match c with
| DChoice(n, _, _) ->
begin try Hashtbl.add node_pc n (Hashtbl.find node_pc n + 1)
with Not_found -> Hashtbl.add node_pc n 1 end
| _ -> ())
l;
List.iter (fun (_, c) -> f_rec c) l
| _ -> ()
in memo f v.root;
let rec print_n fmt = function
| DBot -> Format.fprintf fmt "⊥";
| DTop -> Format.fprintf fmt "⊤";
| DVal (i, (s, _)) -> if i > !max_v then max_v := i;
Format.fprintf fmt "v%d%s" i (if s then "*" else "");
| DChoice(_, v, l) ->
match List.filter (fun (_, x) -> x <> DBot) l with
| [(c, nn)] ->
let aux fmt = function
| DChoice(nn, _, _) as i when Hashtbl.find node_pc nn >= 2 ->
if Hashtbl.mem a nn then () else begin
Queue.push i print_nodes;
Hashtbl.add a nn ()
end;
Format.fprintf fmt "n%d" nn
| x -> print_n fmt x
in
Format.fprintf fmt "%a = %s,@ %a" Formula_printer.print_id v c aux nn
| _ ->
Format.fprintf fmt "%a ? " Formula_printer.print_id v;
let print_u fmt (c, i) =
Format.fprintf fmt "%s → " c;
match i with
| DChoice(nn, v, l) ->
if Hashtbl.mem a nn then () else begin
Queue.push i print_nodes;
Hashtbl.add a nn ()
end;
Format.fprintf fmt "n%d" nn
| _ -> Format.fprintf fmt "%a" print_n i
in
Format.fprintf fmt "@[<h>%a@]" (print_list print_u ", ") l;
in
Format.fprintf fmt "@[<hov>%a@]@." print_n v.root;
while not (Queue.is_empty print_nodes) do
match Queue.pop print_nodes with
| DChoice(n, v, l) as x ->
Format.fprintf fmt "n%d: @[<hov>%a@]@." n print_n x
| _ -> assert false
done;
for id = 0 to !max_v do
try let v = Hashtbl.find v.leaves id in
Format.fprintf fmt "v%d: %a@." id ND.print v
with Not_found -> ()
done
let edd_dump_graphviz v file =
let o = open_out file in
let fmt = Format.formatter_of_out_channel o in
Format.fprintf fmt "digraph G {@[<v 4>@,";
let nov = Hashtbl.create 12 in
let f f_rec = function
| DChoice(n, v, x) ->
let aux fmt = function
| DBot -> Format.fprintf fmt "bot"
| DTop -> Format.fprintf fmt "top"
| DVal(i, _) -> Format.fprintf fmt "v%d" i
| DChoice(n, _, _) -> Format.fprintf fmt "n%d" n
in
let p = try Hashtbl.find nov v with _ -> [] in
Hashtbl.replace nov v (n::p);
Format.fprintf fmt "n%d [label=\"%s\"];@ " n v;
List.iter (fun (i, c) ->
if c <> DBot then Format.fprintf fmt "n%d -> %a [label=\"%s\"];@ " n aux c i;
f_rec c) x
| _ -> ()
in memo f v.root;
Hashtbl.iter (fun var nodes ->
Format.fprintf fmt "{ rank = same; ";
List.iter (Format.fprintf fmt "n%d; ") nodes;
Format.fprintf fmt "}@ ")
nov;
Format.fprintf fmt "@]}@.";
close_out o
(*
edd_bot : varenv -> edd_v
*)
let edd_bot ve = { ve; root = DBot; leaves = Hashtbl.create 1 }
(*
edd_top : evar list -> nvar list -> edd_v
*)
let edd_top ve = { ve; root = DTop; leaves = Hashtbl.create 1 }
(*
edd_of_cons : varenv -> enum_cons -> edd_v
*)
let edd_of_cons ve (op, vid, r) =
let op = match op with | E_EQ -> (=) | E_NE -> (<>) in
let leaves = Hashtbl.create 1 in
let root = match r with
| EItem x ->
DChoice(0, vid,
List.map (fun v -> if op v x then v, DTop else v, DBot)
(List.assoc vid ve.evars))
| EIdent vid2 ->
let a, b =
if Hashtbl.find ve.ev_order vid < Hashtbl.find ve.ev_order vid2
then vid, vid2
else vid2, vid
in
let nc = ref 0 in
let nb x =
incr nc;
DChoice(!nc, b,
List.map (fun v -> if op v x then v, DTop else v, DBot)
(List.assoc b ve.evars))
in
DChoice(0, a, List.map (fun x -> x, nb x) (List.assoc a ve.evars))
in
{ ve; root; leaves }
(*
edd_join : edd_v -> edd_v -> edd_v
edd_meet : edd_v -> edd_v -> edd_v
*)
let edd_join a b =
if a.root = DBot then b else
if b.root = DBot then a else
if a.root = DTop || b.root = DTop then edd_top a.ve else begin
let ve = a.ve in
let leaves, get_leaf = get_leaf_fun () in
let dq = new_node_fun () in
let f f_rec na nb =
match na, nb with
| DChoice(_, va, la), DChoice(_, vb, lb) when va = vb ->
let kl = List.map2
(fun (ta, ba) (tb, bb) -> assert (ta = tb);
ta, f_rec ba bb)
la lb
in
dq va kl
| DTop, _ | _, DTop -> DTop
| DBot, DBot -> DBot
| DChoice(_,va, la), _ when rank ve na < rank ve nb ->
let kl = List.map (fun (k, ca) -> k, f_rec ca nb) la in
dq va kl
| _, DChoice(_, vb, lb) when rank ve nb < rank ve na ->
let kl = List.map (fun (k, cb) -> k, f_rec na cb) lb in
dq vb kl
| DVal (u, _), DVal (v, _) ->
let x = ND.join (Hashtbl.find a.leaves u) (Hashtbl.find b.leaves v) in
get_leaf x
| DVal(u, _), DBot ->
get_leaf (Hashtbl.find a.leaves u)
| DBot, DVal(v, _) ->
get_leaf (Hashtbl.find b.leaves v)
| _ -> assert false (* so that OCaml won't complain ; all cases ARE handled *)
in
{ leaves; ve; root = time "join" (fun () -> memo2 f a.root b.root) }
end
let edd_meet a b =
if a.root = DTop then b else
if b.root = DTop then a else
if a.root = DBot || b.root = DBot then edd_bot a.ve else begin
let ve = a.ve in
let leaves, get_leaf = get_leaf_fun () in
let dq = new_node_fun () in
let f f_rec na nb =
match na, nb with
| DChoice(_, va, la), DChoice(_, vb, lb) when va = vb ->
let kl = List.map2
(fun (ta, ba) (tb, bb) -> assert (ta = tb);
ta, f_rec ba bb)
la lb
in
dq va kl
| DBot, _ | _, DBot -> DBot
| DTop, DTop -> DTop
| DChoice(_, va, la), _ when rank ve na < rank ve nb ->
let kl = List.map (fun (k, ca) -> k, f_rec ca nb) la in
dq va kl
| _, DChoice(_, vb, lb) when rank ve nb < rank ve na ->
let kl = List.map (fun (k, cb) -> k, f_rec na cb) lb in
dq vb kl
| DVal (u, _) , DVal (v, _) ->
let x = ND.meet (Hashtbl.find a.leaves u) (Hashtbl.find b.leaves v) in
get_leaf x
| DVal(u, _), DTop ->
get_leaf (Hashtbl.find a.leaves u)
| DTop, DVal(v, _) ->
get_leaf (Hashtbl.find b.leaves v)
| _ -> assert false (* see above *)
in
{ leaves; ve; root = time "meet" (fun () -> memo2 f a.root b.root) }
end
(*
edd_num_apply : edd_v -> (ND.t -> ND.t) -> edd_v
edd_apply_ncl : edd_v -> num_cons list -> edd_v
*)
let edd_num_apply v nfun =
let ve = v.ve in
let leaves, get_leaf = get_leaf_fun () in
let dq = new_node_fun () in
let f f_rec n =
match n with
| DBot -> DBot
| DTop -> get_leaf (nfun (ND.top ve.nvars))
| DVal (i, _) -> get_leaf (nfun (Hashtbl.find v.leaves i))
| DChoice(n, var, l) ->
let l = List.map (fun (k, v) -> k, f_rec v) l in
dq var l
in
{ leaves; ve; root = memo f v.root }
let edd_apply_ncl v ncl =
edd_num_apply v (fun n -> ND.apply_cl n ncl)
(*
edd_apply_ecl : edd_v -> enum_cons list -> edd_v
*)
let edd_apply_ecl v ec =
let rec cl_k = function
| [] -> edd_top v.ve
| [a] -> edd_of_cons v.ve a
| l ->
let n = ref 0 in
let la, lb = List.partition (fun _ -> incr n; !n mod 2 = 0) l in
edd_meet (cl_k la) (cl_k lb)
in
let cons_edd = cl_k ec in
edd_meet v cons_edd
(*List.fold_left (fun v c -> edd_meet v (edd_of_cons v.ve c)) v ec*)
(*
edd_apply_cl : edd_v -> conslist -> edd_v
*)
let rec edd_apply_cl v (ec, nc, r) =
let v = edd_apply_ecl v ec in
match r with
| CLTrue ->
edd_apply_ncl v nc
| CLFalse -> edd_bot v.ve
| CLAnd (a, b) ->
let v = edd_apply_cl v ([], nc, a) in
if v.root = DBot then v else
edd_apply_cl v ([], nc, b)
| CLOr((eca, nca, ra), (ecb, ncb, rb)) ->
edd_join (edd_apply_cl v (eca, nc@nca, ra))
(edd_apply_cl v (ecb, nc@ncb, rb))
(*
edd_extract_path : edd_v -> id -> edd_v
*)
let edd_extract_path v leaf_id =
let ve = v.ve in
let dq = new_node_fun () in
let f f_rec n =
match n with
| DVal (i, _) when i = leaf_id -> DTop
| DChoice(n, var, l) ->
let l = List.map (fun (k, v) -> k, f_rec v) l in
dq var l
| _ -> DBot
in
{ leaves = Hashtbl.create 1; ve; root = memo f v.root }
(*
edd_eq : edd_v -> edd_v -> bool
*)
let edd_eq a b =
let f f_rec na nb =
match na, nb with
| DBot, DBot -> true
| DTop, DTop -> true
| DVal (i, _), DVal (j, _) ->
ND.eq (Hashtbl.find a.leaves i) (Hashtbl.find b.leaves j)
| DChoice(_, va, la), DChoice(_, vb, lb) when va = vb ->
List.for_all2 (fun (ca, na) (cb, nb) -> assert (ca = cb); f_rec na nb)
la lb
| _ -> false
in memo2 f a.root b.root
(*
edd_subset : edd_v -> edd_v -> bool
*)
let edd_subset a b =
let rank = rank a.ve in
let f f_rec na nb =
match na, nb with
| DBot, _ -> true
| _, DTop -> true
| DTop, DBot -> false
| DVal(i, _), DBot -> ND.is_bot (Hashtbl.find a.leaves i)
| DTop, DVal(i, _) -> ND.is_top (Hashtbl.find b.leaves i)
| DVal(i, _), DVal(j, _) ->
ND.subset (Hashtbl.find a.leaves i) (Hashtbl.find b.leaves j)
| DChoice(_, va, la), DChoice(_, vb, lb) when va = vb ->
List.for_all2 (fun (ca, na) (cb, nb) -> assert (ca = cb); f_rec na nb)
la lb
| DChoice(_, va, la), _ when rank na < rank nb ->
List.for_all (fun (c, n) -> f_rec n nb) la
| _, DChoice(_, vb, lb) when rank na > rank nb ->
List.for_all (fun (c, n) -> f_rec na n) lb
| _ -> assert false
in memo2 f a.root b.root
(*
edd_forget_vars : edd_v -> id list -> edd_v
*)
let edd_forget_vars v vars =
let ve = v.ve in
let leaves, get_leaf = get_leaf_fun () in
let nc = ref 0 in
let memo = Hashtbl.create 12 in
let node_memo = Hashtbl.create 12 in
let rec f l =
let kl = List.sort Pervasives.compare (List.map key l) in
try Hashtbl.find memo kl
with Not_found -> let r =
try
let cn, fn = List.fold_left
(fun (cn, fn) node -> match node with
| DBot -> cn, fn
| DTop -> raise Top
| DVal (i, _) -> cn, i::fn
| DChoice (n, v, l) -> (n, v, l)::cn, fn)
([], []) l in
let cn = List.sort
(fun (n, v1, _) (n, v2, _) -> Pervasives.compare
(Hashtbl.find ve.ev_order v1) (Hashtbl.find ve.ev_order v2))
cn in
if cn = [] then
if fn = [] then DBot
else
let x = list_fold_op ND.join
(List.map (Hashtbl.find v.leaves) fn)
in get_leaf x
else
let _, dv, cl = List.hd cn in
let d, nd = List.partition (fun (_, v, _) -> v = dv) cn in
let ch1 = List.map (fun (a, b, c) -> DChoice(a, b, c)) nd in
let ch2 = List.map (fun i -> DVal (i, (false, 0))) fn in
if List.mem dv vars then
(* Do union of all branches branching from nodes on variable dv *)
let ch3 = List.flatten
(List.map (fun (_, _, c) -> List.map snd c) d) in
f (ch1@ch2@ch3)
else
(* Keep disjunction on variable dv *)
let d, nd = List.partition (fun (_, v, _) -> v = dv) cn in
let cc = List.map
(fun (c, _) ->
let ch3 = List.map (fun (_, _, cl) -> List.assoc c cl) d in
c, f (ch1@ch2@ch3))
cl in
let _, x0 = List.hd cc in
if List.exists (fun (_, x) -> not (edd_node_eq (x, x0))) cc
then begin
let k = (dv, List.map (fun (a, b) -> a, key b) cc) in
let n =
try Hashtbl.find node_memo k
with _ -> (incr nc; Hashtbl.add node_memo k !nc; !nc)
in
DChoice(n, dv, cc)
end else x0
with | Top -> DTop
in Hashtbl.add memo kl r; r
in
{ leaves; ve; root = f [v.root] }
(*
edd_eassign : edd_v -> (id * id) list -> edd_v
*)
let edd_eassign v ids =
let v = edd_forget_vars v (List.map fst ids) in
edd_apply_ecl v
(List.map (fun (x, y) -> (E_EQ, x, EIdent y)) ids)
(*
Just a function to test EDDs
*)
let test () =
let ve = {
evars = ["x", ["tt"; "ff"]; "y", ["tt"; "ff"]; "z", ["tt"; "ff"]];
nvars = [];
ev_order = Hashtbl.create 2 } in
Hashtbl.add ve.ev_order "x" 0;
Hashtbl.add ve.ev_order "y" 1;
Hashtbl.add ve.ev_order "z" 2;
let u = edd_of_cons ve (E_EQ, "x", EIdent "y") in
Format.printf "x = y : @[%a@]@." edd_print u;
let v = edd_of_cons ve (E_NE, "y", EIdent "z") in
Format.printf "y != z : @[%a@]@." edd_print v;
let w = edd_meet u v in
Format.printf "x = y && y != z : @[%a@]@." edd_print w;
let t = edd_join u v in
Format.printf "x = y || y != z : @[%a@]@." edd_print t;
let e = edd_forget_vars w ["y"] in
Format.printf "x = y && y != z ; forget y : @[%a@]@." edd_print e;
let f = edd_forget_vars t ["y"] in
Format.printf "x = y || y != z ; forget y : @[%a@]@." edd_print f
(* ******************************
Abstract interpret
******************************* *)
type env = {
rp : rooted_prog;
opt : cmdline_opt;
ve : varenv;
(* program expressions *)
cl : conslist;
cl_g : conslist;
guarantees : (id * bool_expr) list;
(* abstract interpretation *)
cycle : (id * id * typ) list; (* s'(x) = s(y) *)
forget : (id * typ) list; (* s'(x) not specified *)
mutable data : edd_v;
}
(*
edd_find_starred : edd_v -> int option
edd_unstar : edd_v -> int -> edd_v
*)
let edd_find_starred v =
let f f_rec = function
| DVal (i, (true, _)) -> raise (Found_int i)
| DChoice(_, _, l) -> List.iter (fun (_, x) -> f_rec x) l
| _ -> ()
in
try memo f v.root; None
with Found_int i -> Some i
let edd_unstar v i =
let f f_rec = function
| DChoice(a, b, l) -> DChoice(a, b, List.map (fun (c, x) -> c, f_rec x) l)
| DVal(j, (s, n)) when i = j -> DVal(i, (false, n))
| x -> x
in
{ v with root = memo f v.root }
(*
edd_join_widen : edd_v -> edd_v -> edd_v
*)
let edd_widen (a:edd_v) (b:edd_v) =
let ve = a.ve in
let leaves, get_leaf = get_leaf_fun () in
let dq = new_node_fun () in
let f f_rec na nb =
match na, nb with
| DTop, _ | _, DTop -> DTop
| DBot, DBot -> DBot
| DChoice(_, va, la), DChoice(_, vb, lb) when va = vb ->
let kl = List.map2
(fun (ta, ba) (tb, bb) -> assert (ta = tb);
ta, f_rec ba bb)
la lb
in
dq va kl
| DBot, DVal (i, _) ->
get_leaf (Hashtbl.find b.leaves i)
| DVal (i, _), DBot ->
get_leaf (Hashtbl.find a.leaves i)
| DVal (u, _), DVal (v, _) ->
let p1, p2 = edd_extract_path a u, edd_extract_path b v in
let widen =
if edd_eq p1 p2 then true else false
in
let x = (if widen then ND.widen else ND.join)
(Hashtbl.find a.leaves u) (Hashtbl.find b.leaves v) in
get_leaf x
| DChoice(_,va, la), _ when rank ve na < rank ve nb ->
let kl = List.map (fun (k, ca) -> k, f_rec ca nb) la in
dq va kl
| _, DChoice(_, vb, lb) when rank ve nb < rank ve na ->
let kl = List.map (fun (k, cb) -> k, f_rec na cb) lb in
dq vb kl
| _ -> assert false
in
{ leaves; ve; root = time "join/W" (fun () -> memo2 f a.root b.root) }
(*
edd_accumulate : edd_v -> edd_v -> edd_v
Sometimes do global widening.
*)
let edd_accumulate env (a:edd_v) (b:edd_v) =
let ve = a.ve in
let leaves, get_leaf = get_leaf_fun_st () in
let dq = new_node_fun () in
let f f_rec na nb =
match na, nb with
| DTop, _ | _, DTop -> DTop
| DBot, DBot -> DBot
| DChoice(_, va, la), DChoice(_, vb, lb) when va = vb ->
let kl = List.map2
(fun (ta, ba) (tb, bb) -> assert (ta = tb);
ta, f_rec ba bb)
la lb
in
dq va kl
| DBot, DVal (i, _) ->
get_leaf (true, 0) (Hashtbl.find b.leaves i)
| DVal (i, s), DBot ->
get_leaf s (Hashtbl.find a.leaves i)
| DVal (u, (s1, i1)), DVal (v, _) ->
let p1, p2 = edd_extract_path a u, edd_extract_path b v in
let d1, d2 = Hashtbl.find a.leaves u, Hashtbl.find b.leaves v in
let widen = edd_eq p1 p2 && i1 >= env.opt.widen_delay in
let x = (if widen then ND.widen else ND.join) d1 d2 in
get_leaf (s1, i1 + 1) x
| DChoice(_,va, la), _ when rank ve na < rank ve nb ->
let kl = List.map (fun (k, ca) -> k, f_rec ca nb) la in
dq va kl
| _, DChoice(_, vb, lb) when rank ve nb < rank ve na ->
let kl = List.map (fun (k, cb) -> k, f_rec na cb) lb in
dq vb kl
| _ -> assert false
in
{ leaves; ve; root = time "join/*" (fun () -> memo2 f a.root b.root) }
(*
edd_star_new : edd_v -> edd_v -> edd_v
Star in s leaves that were not present in s0
*)
let edd_star_new s0 s =
let f f_rec = function
| DChoice(n, x, l) ->
DChoice(n, x, List.map (fun (c, x) -> c, f_rec x) l)
| DVal(i, (false, n)) when
not (edd_subset (edd_meet (edd_extract_path s i) s) s0)
->
DVal(i, (true, n))
| x -> x
in
{ s with root = memo f s.root }
(*
pass_cycle : env -> edd_v -> edd_v
unpass_cycle : env -> edd_v -> edd_v
*)
let pass_cycle env v =
let assign_e, assign_n = List.fold_left
(fun (ae, an) (a, b, t) -> match t with
| TEnum _ -> (a, b)::ae, an
| TInt | TReal -> ae, (a, NIdent b)::an)
([], []) env.cycle in
let v = edd_eassign v assign_e in
let v = edd_num_apply v (fun nv -> ND.assign nv assign_n) in
let ef, nf = List.fold_left
(fun (ef, nf) (var, t) -> match t with
| TEnum _ -> var::ef, nf
| TReal | TInt -> ef, var::nf)
([], []) env.forget in
let v = edd_forget_vars v ef in
edd_num_apply v (fun nv -> List.fold_left ND.forgetvar nv nf)
let unpass_cycle env v =
let assign_e, assign_n = List.fold_left
(fun (ae, an) (a, b, t) -> match t with
| TEnum _ -> (b, a)::ae, an
| TInt | TReal -> ae, (b, NIdent a)::an)
([], []) env.cycle in
let v = edd_eassign v assign_e in
let v = edd_num_apply v (fun nv -> ND.assign nv assign_n) in
let ef, nf = List.fold_left
(fun (ef, nf) (_, var, t) ->
if var.[0] <> 'N' then
match t with
| TEnum _ -> var::ef, nf
| TReal | TInt -> ef, var::nf
else ef, nf)
([], []) env.rp.all_vars in
let v = edd_forget_vars v ef in
edd_num_apply v (fun nv -> List.fold_left ND.forgetvar nv nf)
(*
extract_linked_evars : conslist -> (id * id) list
Extract all pairs of enum-type variable (x, y) appearing in an
equation like x = y or x != y
A couple may appear several times in the result.
*)
let rec extract_linked_evars_root (ecl, _, r) =
let v_ecl = List.fold_left
(fun c (_, x, v) -> match v with
| EIdent y -> (x, y)::c
| _ -> c)
[] ecl
in
v_ecl
let rec extract_const_vars_root (ecl, _, _) =
List.fold_left
(fun l (_, x, v) -> match v with
| EItem _ -> x::l
| _ -> l)
[] ecl
(*
scope_constrict : id list -> (id * id) list -> id list
Orders the variable in the first argument such as to minimize the
sum of the distance between the position of two variables appearing in
a couple of the second list. (minimisation is approximate, this is
an heuristic so that the EDD will not explode in size when expressing
equations such as x = y && u = v && a != b)
*)
let scope_constrict vars cp_id =
let var_i = Array.of_list vars in
let n = Array.length var_i in
let i_var = Hashtbl.create n in
Array.iteri (fun i v -> Hashtbl.add i_var v i) var_i;
let cp_i = List.map
(fun (x, y) -> Hashtbl.find i_var x, Hashtbl.find i_var y)
cp_id in
let eval i =
let r = Array.make n (-1) in
Array.iteri (fun pos var -> r.(var) <- pos) i;
Array.iteri (fun _ x -> assert (x <> (-1))) r;
List.fold_left
(fun s (x, y) -> s + abs (r.(x) - r.(y)))
0 cp_i
in
let best = Array.init n (fun i -> i) in
let usefull = ref true in
Format.printf "SCA";
while !usefull do
Format.printf ".@?";
usefull := false;
let try_s x =
if eval x < eval best then begin
Array.blit x 0 best 0 n;
usefull := true
end
in
for i = 0 to n-1 do
let tt = Array.copy best in
(* move item i at beginning *)
let temp = tt.(i) in
for j = i downto 1 do tt.(j) <- tt.(j-1) done;
tt.(0) <- temp;
(* try all positions *)
try_s tt;
for j = 1 to n-1 do
let temp = tt.(j-1) in
tt.(j-1) <- tt.(j);
tt.(j) <- temp;
try_s tt
done
done
done;
Format.printf "@.";
Array.to_list (Array.map (Array.get var_i) best)
(*
force_ordering : id list -> (float * id list) list -> id list
Determine a good ordering for enumerate variables based on the FORCE algorithm
*)
let force_ordering vars groups =
let var_i = Array.of_list vars in
let n = Array.length var_i in
let i_var = Hashtbl.create n in
Array.iteri (fun i v -> Hashtbl.add i_var v i) var_i;
Hashtbl.add i_var "#BEGIN" (-1);
let ngroups = List.map
(fun (w, l) -> w, List.map (Hashtbl.find i_var) l)
groups in
let ord = Array.init n (fun i -> i) in
for iter = 0 to 500 do
let rev = Array.make n (-1) in
for i = 0 to n-1 do rev.(ord.(i)) <- i done;
let bw = Array.make n 0. in
let w = Array.make n 0. in
let gfun (gw, l) =
let sp = List.fold_left (+.) 0.
(List.map
(fun i -> if i = -1 then -.gw else float_of_int (rev.(i))) l)
in
let b = sp /. float_of_int (List.length l) in
List.iter (fun i -> if i >= 0 then begin
bw.(i) <- bw.(i) +. (gw *. b);
w.(i) <- w.(i) +. gw end)
l
in
List.iter gfun ngroups;
let b = Array.init n
(fun i ->
if w.(i) = 0. then
float_of_int i
else bw.(i) /. w.(i)) in
let ol = List.sort
(fun i j -> Pervasives.compare b.(i) b.(j))
(Array.to_list ord) in
Array.blit (Array.of_list ol) 0 ord 0 n
done;
List.map (Array.get var_i) (Array.to_list ord)
(*
init_env : cmdline_opt -> rooted_prog -> env
*)
let init_env opt rp =
Format.printf "Vars: @[<hov>%a@]@.@."
(print_list Ast_printer.print_typed_var ", ")
rp.all_vars;
let num_vars, enum_vars = List.fold_left
(fun (nv, ev) (_, id, t) -> match t with
| TEnum ch -> nv, (id, ch)::ev
| TInt -> (id, false)::nv, ev
| TReal -> (id, true)::nv, ev)
([], []) rp.all_vars in
let init_f = Transform.init_f_of_prog rp in
Format.printf "Init formula: %a@.@." Formula_printer.print_expr init_f;
let init_cl = conslist_of_f init_f in
let guarantees = Transform.guarantees_of_prog rp in
Format.printf "Guarantees:@.";
List.iter (fun (id, f) ->
Format.printf " %s: %a@." id Formula_printer.print_expr f)
guarantees;
Format.printf "@.";
let f = Formula.eliminate_not (Transform.f_of_prog rp false) in
let f_g = Formula.eliminate_not (Transform.f_of_prog rp true) in
Format.printf "Cycle formula:@.%a@.@." Formula_printer.print_expr f;
let cl = Formula.conslist_of_f f in
let cl_g = Formula.conslist_of_f f_g in
Format.printf "Cycle conslist:@.%a@.@." Formula_printer.print_conslist cl;
(* calculate order for enumerated variables *)
let evars = List.map fst enum_vars in
let lv = extract_linked_evars_root init_cl
@ extract_linked_evars_root cl_g in
let lv = uniq_sorted
(List.sort Pervasives.compare (List.map ord_couple lv)) in
let lv_f = List.map (fun (a, b) -> (1.0, [a; b])) lv in
let lv_f = lv_f @ (List.map (fun v -> (10.0, ["#BEGIN"; v]))
(extract_const_vars_root cl)) in
let lv_f = lv_f @ (List.map (fun v -> (5.0, ["#BEGIN"; v]))
(List.filter (fun n -> is_suffix n "init") evars)) in
let lv_f = lv_f @ (List.map (fun v -> (3.0, ["#BEGIN"; v]))
(List.filter (fun n -> is_suffix n "state") evars)) in
let evars_ord =
if true then
time "FORCE" (fun () -> force_ordering evars lv_f)
else
time "SCA" (fun () -> scope_constrict evars lv)
in
let evars_ord =
if false then
let va, vb = List.partition (fun n -> is_suffix n "init") evars_ord in
let vb, vc = List.partition (fun n -> is_suffix n "state") vb in
(List.rev va) @ vb @ vc
else
evars_ord
in
let ev_order = Hashtbl.create (List.length evars) in
List.iteri (fun i x -> Hashtbl.add ev_order x i) evars_ord;
let ve = { evars = enum_vars; nvars = num_vars; ev_order } in
Format.printf "Order for variables: @[<hov>[%a]@]@."
(print_list Formula_printer.print_id ", ") evars_ord;
(* calculate cycle variables and forget variables *)
let cycle = List.fold_left
(fun q (_, id, ty) ->
if id.[0] = 'N' then
(String.sub id 1 (String.length id - 1), id, ty)::q
else q)
[] rp.all_vars
in
let forget = List.map (fun (_, id, ty) -> (id, ty))
(List.filter
(fun (_, id, _) ->
not (List.exists (fun (_, id2, _) -> id2 = "N"^id) rp.all_vars))
rp.all_vars)
in
(* calculate initial environment *)
let data = edd_apply_cl (edd_top ve) init_cl in
Format.printf "Init: @[<hov>%a@]@." edd_print data;
{ rp; opt; ve;
cl; cl_g; guarantees;
cycle; forget; data }
let do_prog opt rp =
let e = init_env opt rp in
(* Do iterations until fixpoint is reached *)
let rec ch_it n x =
edd_dump_graphviz x (Format.sprintf "/tmp/graph-it%d.dot" n);
match edd_find_starred x with
| None ->
Format.printf "It. %d : full iteration.@." n;
let d2 = edd_apply_cl x e.cl in
let dc = pass_cycle e d2 in
if dc.root = DBot then begin
Format.printf "@.WARNING: contradictory hypotheses!@.@.";
x
end else begin
let y = edd_star_new x (edd_accumulate e x dc) in
if e.opt.vverbose_ci then
Format.printf "d2 %a@. dc %a@. y %a@."
edd_print d2 edd_print dc edd_print y;
if e.opt.verbose_ci then
Format.printf " -> %a@." edd_print y;
if not (edd_eq x y) then ch_it (n+1) y else y
end
| Some i ->
let path = edd_extract_path x i in
let x = edd_unstar x i in
Format.printf "It. %d: @[<hov>%a@]@." n edd_print path;
let path_target = unpass_cycle e path in
let start = edd_meet path x in
let f i =
let i = edd_meet path i in
let i' = edd_meet i path_target in
let j = edd_apply_cl i' e.cl in
if e.opt.vverbose_ci then
Format.printf "i %a@.i' %a@.j %a@."
edd_print i edd_print i' edd_print j;
let q = edd_join start (pass_cycle e j) in
edd_meet path q
in
let rec iter n i =
let fi = f i in
let j =
if n < e.opt.widen_delay then
edd_join i fi
else
edd_widen i fi
in
if edd_eq i j then j else iter (n+1) j
in
let y = iter 0 start in
let z = fix edd_eq f y in
let fj = pass_cycle e (edd_apply_cl z e.cl) in
if fj.root = DBot then begin
Format.printf "@.WARNING: contradictory hypotheses!@.@.";
x
end else begin
let r = edd_star_new x (edd_accumulate e x fj) in
if e.opt.verbose_ci then
Format.printf " -> %a@." edd_print r;
ch_it (n+1) r
end
in
let init_acc = edd_star_new (edd_bot e.data.ve) e.data in
(* Dump final state *)
let acc = ch_it 0 init_acc in
edd_dump_graphviz acc "/tmp/graph-final0.dot";
Format.printf "Finishing up...@.";
let final = edd_apply_cl acc e.cl in
edd_dump_graphviz final "/tmp/graph-final.dot";
if e.opt.verbose_ci then
Format.printf "@.Final:@.@[<hov>%a@]@." edd_print final;
(* Check guarantees *)
let check_guarantee (id, f) =
let cl = Formula.conslist_of_f f in
Format.printf "@[<hv 4>%s:@ %a ⇒ ⊥ @ "
id Formula_printer.print_conslist cl;
let z = edd_apply_cl final cl in
if z.root = DBot then
Format.printf "OK@]@ "
else
Format.printf "FAIL@]@ "
in
if e.guarantees <> [] then begin
Format.printf "Guarantee @[<v 0>";
List.iter check_guarantee e.guarantees;
Format.printf "@]@."
end;
(* Examine probes *)
if List.exists (fun (p, _, _) -> p) e.rp.all_vars then begin
let final_flat = edd_forget_vars final
(List.fold_left
(fun l (_, id, ty) -> match ty with
| TInt | TReal -> l
| TEnum _ -> id::l)
[] e.rp.all_vars) in
let final_flat = match final_flat.root with
| DTop -> ND.top e.ve.nvars
| DBot -> ND.bottom e.ve.nvars
| DVal(i, _) -> Hashtbl.find final_flat.leaves i
| DChoice _ -> assert false
in
Format.printf "Probes: @[<v 0>";
List.iter (fun (p, id, ty) ->
if p then match ty with
| TInt | TReal ->
Format.printf "%a ∊ %a@." Formula_printer.print_id id
ND.print_itv (ND.project final_flat id)
| TEnum _ -> Format.printf "%a : enum variable@."
Formula_printer.print_id id)
e.rp.all_vars;
Format.printf "@]@."
end
end
|