1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
|
open Ast
open Ast_util
open Formula
open Typing
open Util
open Num_domain
open Enum_domain
type cmdline_opt = {
widen_delay : int;
disjunct : (id -> bool);
verbose_ci : bool;
}
module I (ED : ENUM_ENVIRONMENT_DOMAIN) (ND : NUMERICAL_ENVIRONMENT_DOMAIN) : sig
type st
val do_prog : cmdline_opt -> rooted_prog -> unit
end = struct
(* **************************
Disjunction domain
************************** *)
type case_v = ED.t * ND.t
type case = ED.item list
type dd_v = {
d_vars : id list;
data : (case, case_v) Hashtbl.t;
}
(*
print_dd : Formatter.t -> dd_v -> unit
*)
let print_aux fmt d_vars env =
let print_it q (enum, num) =
Format.fprintf fmt "@[<hov 4>";
List.iter2
(fun id v -> Format.fprintf fmt "%a ≡ %s,@ "
Formula_printer.print_id id v)
d_vars q;
Format.fprintf fmt "@ %a,@ %a@]@."
ED.print enum ND.print num;
in
Hashtbl.iter print_it env
let print_dd fmt dd = print_aux fmt dd.d_vars dd.data
(*
dd_bot : id list -> dd_v
*)
let dd_bot d_vars = { d_vars; data = Hashtbl.create 12 }
(*
dd_add_case : dd_v -> case_v -> unit
*)
let dd_add_case env (enum, num) =
let rec aux enum vals = function
| [] ->
let case = List.rev vals in
begin try let e0, n0 = Hashtbl.find env.data case in
Hashtbl.replace env.data case (ED.join enum e0, ND.join num n0);
with Not_found ->
Hashtbl.add env.data case (enum, num);
end
| p::q ->
List.iter
(fun v -> match ED.apply_cons enum (E_EQ, p, EItem v) with
| [en] -> aux en (v::vals) q
| _ -> assert false)
(ED.project enum p)
in aux enum [] env.d_vars
(*
dd_singleton : id list -> case_v -> dd_v
*)
let dd_singleton d_vars d =
let v = { d_vars; data = Hashtbl.create 1 } in
dd_add_case v d;
v
(*
dd_extract_case : dd_v -> case -> dd_v
*)
let dd_extract_case v case =
try dd_singleton v.d_vars (Hashtbl.find v.data case)
with Not_found -> dd_bot v.d_vars
(*
dd_apply_ncons : dd_v -> num_cons list -> dd_v
*)
let dd_apply_ncl v ncl =
let vv = dd_bot v.d_vars in
Hashtbl.iter (fun case (enum, num) ->
let num = ND.apply_cl num ncl in
if not (ND.is_bot num) then
Hashtbl.add vv.data case (enum, num))
v.data;
vv
(*
dd_apply_econs : dd_v -> enum_cons -> dd_v
*)
let dd_apply_econs v cons =
let vv = dd_bot v.d_vars in
Hashtbl.iter (fun case (enum, num) ->
List.iter
(fun enum -> dd_add_case vv (enum, num))
(ED.apply_cons enum cons))
v.data;
vv
(*
dd_join : dd_v -> dd_v -> dd_v
*)
let dd_join a b =
let vv = { d_vars = a.d_vars; data = Hashtbl.copy a.data } in
Hashtbl.iter (fun case (enum, num) ->
try let e2, n2 = Hashtbl.find vv.data case in
Hashtbl.replace vv.data case (ED.join e2 enum, ND.join n2 num)
with Not_found -> Hashtbl.replace vv.data case (enum, num))
b.data;
vv
(*
dd_meet : dd_v -> dd_v -> dd_v
*)
let dd_meet a b =
let vv = dd_bot a.d_vars in
Hashtbl.iter (fun case (enum, num) ->
try let e2, n2 = Hashtbl.find b.data case in
let en, nn = ED.meet enum e2, ND.meet n2 num in
if not (ND.is_bot nn) then Hashtbl.add vv.data case (en, nn)
with _ -> ())
a.data;
vv
(*
dd_apply_cl : dd_v -> conslist -> dd_v
*)
let rec apply_cl env (ec, nc, r) =
match r with
| CLTrue ->
let env_ec = List.fold_left dd_apply_econs env ec in
let env_nc = dd_apply_ncl env_ec nc in
(* Format.printf "[[ %a -> %a ]]@."
print_dd env print_dd env_nc; *)
env_nc
| CLFalse -> dd_bot env.d_vars
| CLAnd(a, b) ->
let env = apply_cl env (ec, nc, a) in
apply_cl env (ec, nc, b)
| CLOr((eca, nca, ra), (ecb, ncb, rb)) ->
dd_join (apply_cl env (ec@eca, nc@nca, ra))
(apply_cl env (ec@ecb, nc@ncb, rb))
(* ***************************
Abstract interpretation
*************************** *)
type st = {
rp : rooted_prog;
opt : cmdline_opt;
enum_vars : (id * ED.item list) list;
num_vars : (id * bool) list;
(* program expressions *)
f : bool_expr;
cl : conslist;
f_g : bool_expr;
cl_g : conslist;
guarantees : (id * bool_expr) list;
(* abstract interpretation *)
cycle : (id * id * typ) list; (* s'(x) = s(y) *)
forget : (id * typ) list; (* s'(x) not specified *)
d_vars : id list; (* disjunction variables *)
top : case_v;
env : (case, case_v) Hashtbl.t;
mutable delta : case list;
widen : (case, int) Hashtbl.t;
}
(*
print_st : Formatter.t -> st -> unit
*)
let print_st fmt st = print_aux fmt st.d_vars st.env
(*
add_case : st -> case_v -> unit
*)
let add_case st (enum, num) =
let rec aux enum vals = function
| [] ->
let case = List.rev vals in
begin try let e0, n0 = Hashtbl.find st.env case in
if (not (ED.subset enum e0)) || (not (ND.subset num n0)) then begin
begin try
let n = Hashtbl.find st.widen case in
let jw = if n < st.opt.widen_delay then ND.join else ND.widen in
Hashtbl.replace st.env case (ED.join e0 enum, jw n0 num);
Hashtbl.replace st.widen case (n+1);
with Not_found ->
Hashtbl.replace st.env case (ED.join enum e0, ND.join num n0);
Hashtbl.add st.widen case 0;
end;
if not (List.mem case st.delta) then st.delta <- case::st.delta
end
with Not_found ->
Hashtbl.add st.env case (enum, num);
if not (List.mem case st.delta) then st.delta <- case::st.delta
end
| p::q ->
List.iter
(fun v -> match ED.apply_cons enum (E_EQ, p, EItem v) with
| [en] -> aux en (v::vals) q
| _ -> assert false)
(ED.project enum p)
in aux enum [] st.d_vars
(*
init_state : int -> rooted_prog -> st
*)
let init_state opt rp =
Format.printf "Vars: @[<hov>%a@]@.@."
(Ast_printer.print_list Ast_printer.print_typed_var ", ")
rp.all_vars;
let enum_vars = List.fold_left
(fun v (_, id, t) -> match t with
| TEnum ch -> (id, ch)::v | _ -> v)
[] rp.all_vars in
let num_vars = List.fold_left
(fun v (_, id, t) -> match t with
| TInt -> (id, false)::v | TReal -> (id, true)::v | _ -> v)
[] rp.all_vars in
let init_f = Transform.init_f_of_prog rp in
Format.printf "Init formula: %a@.@." Formula_printer.print_expr init_f;
let init_cl = conslist_of_f init_f in
let guarantees = Transform.guarantees_of_prog rp in
Format.printf "Guarantees:@.";
List.iter (fun (id, f) ->
Format.printf " %s: %a@." id Formula_printer.print_expr f)
guarantees;
Format.printf "@.";
let f = Formula.eliminate_not (Transform.f_of_prog rp false) in
let f_g = Formula.eliminate_not (Transform.f_of_prog rp true) in
Format.printf "Cycle formula:@.%a@.@." Formula_printer.print_expr f;
let cl = Formula.conslist_of_f f in
let cl_g = Formula.conslist_of_f f_g in
(* calculate cycle variables and forget variables *)
let cycle = List.fold_left
(fun q (_, id, ty) ->
if id.[0] = 'N' then
(String.sub id 1 (String.length id - 1), id, ty)::q
else q)
[] rp.all_vars
in
let forget = List.map (fun (_, id, ty) -> (id, ty))
(List.filter
(fun (_, id, _) ->
not (List.exists (fun (_, id2, _) -> id2 = "N"^id) rp.all_vars))
rp.all_vars)
in
(* calculate disjunction variables *)
(* first approximation : use all enum variables appearing in init formula *)
let rec calculate_dvars (ec, _, r) =
let a = List.map (fun (_, id, _) -> id) ec in
let rec aux = function
| CLTrue | CLFalse -> []
| CLAnd(u, v) ->
aux u @ aux v
| CLOr(u, v) ->
calculate_dvars u @ calculate_dvars v
in a @ aux r
in
let d_vars_0 = calculate_dvars init_cl in
let d_vars_1 = List.filter
(fun id -> opt.disjunct id && not (List.mem id d_vars_0) && id.[0] <> 'N')
(List.map (fun (id, _) -> id) enum_vars) in
let d_vars = d_vars_0 @ d_vars_1 in
(* setup abstract data *)
let top = ED.top enum_vars, ND.top num_vars in
let delta = [] in
let widen = Hashtbl.create 12 in
(* calculate initial state and environment *)
let init_s = dd_bot d_vars in
let init_ec, _, _ = init_cl in
let init_ed = List.fold_left
(fun ed cons ->
List.flatten (List.map (fun x -> ED.apply_cons x cons) ed))
[ED.top enum_vars] (init_ec) in
List.iter (fun ed -> dd_add_case init_s (ed, ND.top num_vars)) init_ed;
let env_dd = apply_cl init_s init_cl in
let env = env_dd.data in
let st =
{ rp; opt; enum_vars; num_vars;
f; cl; f_g; cl_g; guarantees;
cycle; forget; d_vars; top;
env; delta; widen } in
Hashtbl.iter (fun case _ -> st.delta <- case::st.delta) st.env;
st
(*
pass_cycle : st -> case_v -> case_v
*)
let pass_cycle st (enum, num) =
let assign_e =
List.map (fun (a, b, _) -> a, b)
(List.filter
(fun (_, _, t) -> match t with TEnum _ -> true | _ -> false)
st.cycle) in
let assign_n =
List.map (fun (a, b, _) -> a, NIdent b)
(List.filter
(fun (_, _, t) -> match t with TInt | TReal -> true | _ -> false)
st.cycle) in
let enum = ED.assign enum assign_e in
let num = ND.assign num assign_n in
List.fold_left
(fun (enum, num) (var, t) -> match t with
| TEnum _ -> ED.forgetvar enum var, num
| TReal | TInt -> enum, ND.forgetvar num var)
(enum, num) st.forget
let dd_pass_cycle st (v : dd_v) =
let vv = dd_bot v.d_vars in
Hashtbl.iter (fun _ x -> dd_add_case vv (pass_cycle st x)) v.data;
vv
(*
cycle : st -> cl -> dd_v -> dd_v
*)
let cycle st cl env =
let env_f = apply_cl env cl in
(* Format.printf "{{ %a ->@.%a }}@." print_dd env print_dd env_f; *)
dd_pass_cycle st env_f
(*
set_target_case : st -> dd_v -> case -> dd_v
*)
let set_target_case st env case =
List.fold_left2
(fun env id v ->
if List.exists (fun (id2, _) -> id2 = "N"^id) st.enum_vars then
dd_apply_econs env (E_EQ, "N"^id, EItem v)
else env)
env st.d_vars case
(*
do_prog : rooted_prog -> unit
*)
let do_prog opt rp =
let st = init_state opt rp in
Format.printf "Init: %a@." print_st st;
let n_ch_iter = ref 0 in
(* chaotic iteration loop *)
while st.delta <> [] do
let case = List.hd st.delta in
incr n_ch_iter;
Format.printf "Chaotic iteration %d: @[<hov>[%a]@]@."
!n_ch_iter
(Ast_printer.print_list Formula_printer.print_id ", ") case;
let start = try Hashtbl.find st.env case with Not_found -> assert false in
let start_dd = dd_singleton st.d_vars start in
let f i =
let i = dd_singleton st.d_vars i in
let i' = set_target_case st i case in
let q = dd_join start_dd (cycle st st.cl i') in
try Hashtbl.find q.data case with Not_found -> assert false
in
let rec iter n (i_enum, i_num) =
let fi_enum, fi_num = f (i_enum, i_num) in
let j_enum, j_num =
if n < st.opt.widen_delay then
ED.join i_enum fi_enum, ND.join i_num fi_num
else
ED.join i_enum fi_enum, ND.widen i_num fi_num
in
if ED.eq j_enum i_enum && ND.eq j_num i_num
then (i_enum, i_num)
else iter (n+1) (j_enum, j_num)
in
let y = iter 0 start in
let z = fix (fun (a, b) (c, d) -> ED.eq a c && ND.eq b d) f y in
let i = dd_singleton st.d_vars z in
let j = cycle st st.cl i in
let cases = ref [] in
Hashtbl.iter (fun case _ -> cases := case::(!cases)) j.data;
List.iter
(fun case ->
let i' = set_target_case st i case in
let j = cycle st st.cl i' in
Hashtbl.iter (fun _ q -> add_case st q) j.data)
!cases;
st.delta <- List.filter ((<>) case) st.delta;
if st.opt.verbose_ci then
Format.printf "-> @[<hov>%a@]@." print_st st;
done;
let final = apply_cl { d_vars = st.d_vars; data = st.env } st.cl in
Format.printf "Accessible: %a@." print_dd final;
let check_guarantee (id, f) =
let cl = Formula.conslist_of_f f in
Format.printf "@[<hv 4>%s:@ %a ⇒ ⊥ @ "
id Formula_printer.print_conslist cl;
let z = apply_cl final cl in
if Hashtbl.length z.data = 0 then
Format.printf "OK@]@ "
else
Format.printf "FAIL@]@ "
in
if st.guarantees <> [] then begin
Format.printf "Guarantee @[<v 0>";
List.iter check_guarantee st.guarantees;
Format.printf "@]@."
end;
if List.exists (fun (p, _, _) -> p) st.rp.all_vars then begin
Format.printf "Probes: @[<v 0>";
List.iter (fun (p, id, ty) ->
if p then begin
Format.printf "%a ∊ @[<v>" Formula_printer.print_id id;
Hashtbl.iter (fun case (enum, num) ->
begin match ty with
| TInt | TReal ->
Format.printf "%a" ND.print_itv (ND.project num id)
| TEnum _ ->
Format.printf "@[<hov>{ %a }@]"
(Ast_printer.print_list Formula_printer.print_id ", ")
(ED.project enum id)
end;
Format.printf " when @[<hov>[%a]@]@ "
(Ast_printer.print_list Formula_printer.print_id ", ") case)
final.data;
Format.printf "@]@ "
end)
st.rp.all_vars;
Format.printf "@]@."
end
end
|