open Ast
open Util
open Ast_util
open Formula
open Typing
open Interpret (* used for constant evaluation ! *)
(* Transform SCADE program to logical formula.
See formula.ml for a description of the formula's AST.
Convention : to access the last value of a variable,
access the variable with the same name prefixed by "L".
A pre-processing pass will extract the variables that are
referenced in such a way so that they are taken into
account when calculating the memory.
*)
(* node * prefix * equations *)
type scope = id * id * eqn ext list
type transform_data = {
rp : rooted_prog;
consts : I.value VarMap.t;
(* future : the automata state *)
}
(* Numerical types / Enumerated types *)
type ne_expr =
| EE of enum_expr
| NE of num_expr * bool (* bool: true -> real, false -> int *)
(* f_of_neexpr :
transform_data -> (string, string) -> (ne_expr list -> bool_expr) -> expr -> bool_expr
*)
let rec f_of_neexpr td (node, prefix, clock_scope) where expr =
let sub = f_of_neexpr td (node, prefix, clock_scope) in
let le = loc_error (snd expr) in
match fst expr with
(* ident *)
| AST_identifier(id, _) ->
let qid = node^"/"^id in
begin match type_var td.rp node id with
| TInt -> where [NE (NIdent qid, false)]
| TReal -> where [NE (NIdent qid, true)]
| TEnum _ -> where [EE (EIdent qid)]
end
| AST_idconst(id, _) ->
begin let x = VarMap.find ("cst/"^id) td.consts in
try where [NE (NIntConst (I.as_int x), false)]
with _ -> try where [NE (NRealConst (I.as_real x), true)]
with _ -> try where [EE (EItem (if I.as_bool x then bool_true else bool_false))]
with _ -> le error "Invalid data for supposedly numerical/boolean constant."
end
(* numerical *)
| AST_int_const(i, _) -> where [NE(NIntConst(int_of_string i), false)]
| AST_real_const(r, _) -> where [NE(NRealConst(float_of_string r), true)]
| AST_bool_const b -> where [EE(EItem (if b then bool_true else bool_false))]
| AST_unary(op, e) ->
sub (function
| [NE (x, r)] -> where [NE(NUnary(op, x, r), r)]
| _ -> le invalid_arity "Unary operator") e
| AST_binary(op, a, b) ->
sub (function
| [NE (x, r1); NE (y, r2)] ->
let r = r1 || r2 in
where [NE(NBinary(op, x, y, r), r)]
| _ -> le invalid_arity "binary operator")
(AST_tuple([a; b]), snd expr)
| AST_cast(e, ty) ->
let is_real = (ty = AST_TREAL) in
sub (function
| [NE (x, _)] -> where [NE(NUnary(AST_UPLUS, x, is_real), is_real)]
| _ -> le invalid_arity "Cast.")
e
(* temporal *)
| AST_pre(expr, id) ->
let id = node^"/"^id in
let typ = type_expr td.rp node expr in
where
(List.mapi
(fun i t -> let x = "L"^id^"."^(string_of_int i) in
match t with
| TInt -> NE(NIdent x, false)
| TReal -> NE(NIdent x, true)
| TEnum _ -> EE(EIdent x))
typ)
| AST_arrow(a, b) ->
if td.rp.init_scope clock_scope
then
f_ternary
(f_e_eq (EIdent (clock_scope^"init")) (EItem bool_true))
(sub where a)
(sub where b)
else if not (td.rp.no_time_scope clock_scope)
then
f_ternary
(BRel(AST_GE, NIdent(clock_scope^"time"), NIntConst 1, false))
(sub where b)
(sub where a)
else begin
Format.eprintf "WARNING: scope %s needs a clock (init var or time var)!@."
clock_scope;
f_or (sub where a) (sub where b)
end
(* other *)
| AST_if(c, a, b) ->
f_ternary
(f_of_expr td (node, prefix, clock_scope) c)
(sub where a)
(sub where b)
| AST_instance ((f, _), args, nid) ->
let (n, _) = find_node_decl td.rp.p f in
where
(List.map
(fun (_, id, t) -> let x = node^"/"^nid^"/"^id in
match t with
| AST_TINT -> NE(NIdent x, false)
| AST_TREAL -> NE(NIdent x, true)
| _ -> EE(EIdent x))
n.ret)
| AST_tuple l ->
let rec rl l x = match l with
| [] -> where x
| p::q ->
sub (fun y -> rl q (x@y)) p
in rl l []
(* boolean values treated as enumerated types *)
| _ when type_expr td.rp node expr = [bool_type] ->
f_ternary
(f_of_expr td (node, prefix, clock_scope) expr)
(where [EE (EItem bool_true)])
(where [EE (EItem bool_false)])
| _ -> le type_error "Expected numerical/enumerated value"
(*
f_of_expr :
transform_data -> (string, string) -> expr -> bool_expr
f_of_bexpr :
transform_data -> (string, string) -> (bool_expr -> bool_expr) -> expr -> bool_expr
*)
and f_of_bexpr td (node, prefix, clock_scope) where expr =
let sub = f_of_bexpr td (node, prefix, clock_scope) in
let sub_id = sub (fun x -> x) in
let le = loc_error (snd expr) in
match fst expr with
| AST_bool_const b -> where (BConst b)
| AST_binary_bool(AST_AND, a, b) -> where (f_and (sub_id a) (sub_id b))
| AST_binary_bool(AST_OR, a, b) -> where (f_or (sub_id a) (sub_id b))
| AST_not(a) -> where (BNot (sub_id a))
| AST_binary_rel(rel, a, b) ->
where
(f_of_neexpr td (node, prefix, clock_scope)
(function
| [NE (x, r1); NE (y, r2)] -> BRel(rel, x, y, r1 || r2)
| [EE x; EE y] ->
let eop = match rel with
| AST_EQ -> E_EQ
| AST_NE -> E_NE
| _ -> type_error "Invalid operator on enumerated values."
in f_e_op eop x y
| [NE _; EE _] | [EE _; NE _] -> le type_error "Invalid arguments for binary operator."
| _ -> le invalid_arity "Binary operator")
(AST_tuple [a; b], snd expr))
(* Temporal *)
| AST_arrow(a, b) ->
if td.rp.init_scope clock_scope
then
BTernary(
(f_e_eq (EIdent (clock_scope^"init")) (EItem bool_true)),
(sub where a),
(sub where b))
else if not (td.rp.no_time_scope clock_scope)
then
BTernary(
(BRel(AST_GE, NIdent(clock_scope^"time"), NIntConst 1, false)),
(sub where b),
(sub where a))
else begin
Format.eprintf "WARNING: scope %s needs a clock (init var or time var)!@."
clock_scope;
f_or (sub where a) (sub where b)
end
(* Enumerations... *)
| _ when type_expr td.rp node expr = [bool_type] ->
let ff = function
| [EE x] ->
where (f_e_eq x (EItem bool_true))
| _ -> assert false
in
f_of_neexpr td (node, prefix, clock_scope) ff expr
| _ -> le type_error "Expected boolean value."
and f_of_expr td (node, prefix, clock_scope) expr =
f_of_bexpr td (node, prefix, clock_scope) (fun x -> x) expr
(*
Translate program into one big formula
*)
let reset_cond rst_exprs =
List.fold_left f_or (BConst false) rst_exprs
let clock_scope_here (node, prefix, _) =
node^"/"^prefix
let gen_clock td (node, prefix, _) active rst_exprs =
let clock_scope = node^"/"^prefix in
let act_eq =
if clock_scope = "/"
then BConst true
else if active
then BEnumCons(E_EQ, clock_scope^"act", EItem bool_true)
else BEnumCons(E_NE, clock_scope^"act", EItem bool_true)
in
let clock_eq =
let rst_code =
f_and
(if not (td.rp.no_time_scope clock_scope)
then BRel(AST_EQ, NIdent(clock_scope^"time"), NIntConst 0, false)
else BConst true)
(if td.rp.init_scope clock_scope
then f_e_eq (EIdent(clock_scope^"init")) (EItem bool_true)
else BConst true)
in
let last_act_eq =
(f_and
(if not (td.rp.no_time_scope clock_scope)
then BRel(AST_EQ, NIdent(clock_scope^"time"),
NBinary(AST_PLUS, NIntConst 1, NIdent("L"^clock_scope^"time"), false),
false)
else BConst true)
(if td.rp.init_scope clock_scope
then BEnumCons (E_NE, clock_scope^"init", EItem bool_true)
else BConst true))
in
let last_inact_eq =
(f_and
(if not (td.rp.no_time_scope clock_scope)
then BRel(AST_EQ,
NIdent(clock_scope^"time"),
NIdent("L"^clock_scope^"time"), false)
else BConst true)
(if td.rp.init_scope clock_scope
then f_e_eq (EIdent(clock_scope^"init"))
(EIdent ("L"^clock_scope^"init"))
else BConst true))
in
let no_rst_code =
if clock_scope = "/"
then last_act_eq
else
f_ternary
(BEnumCons(E_EQ, "L"^clock_scope^"act", EItem bool_true))
last_act_eq last_inact_eq
in
if rst_code = BConst true && no_rst_code = BConst true
then BConst true
else
f_ternary
(reset_cond rst_exprs)
rst_code
no_rst_code
in
(clock_scope, rst_exprs), f_and act_eq clock_eq
let rec f_of_scope active td (node, prefix, eqs) (clock_scope, rst_exprs as cs) assume_guarantees =
let expr_eq e =
let instance_eq (_, id, eqs, args) =
let eq = f_of_scope active td (node^"/"^id, "", eqs)
cs assume_guarantees in
if active then
let arg_eq ((_,argname,ty), expr) =
f_of_neexpr td (node, prefix, clock_scope) (function
| [NE (v, r)] ->
let need_r = (ty = AST_TREAL) in
if r <> need_r then error "Invalid type for numerical argument.";
BRel(AST_EQ,
NIdent(node^"/"^id^"/"^argname), v, r)
| [EE v] -> f_e_eq (EIdent(node^"/"^id^"/"^argname)) v
| _ -> invalid_arity "in argument")
expr
in f_and eq (f_and_list (List.map arg_eq args))
else
eq
in
let eq_i = f_and_list (List.map instance_eq (extract_instances td.rp.p e)) in
let pre_expr (id, expr) =
let id = node^"/"^id in
if active then
f_of_neexpr td (node, prefix, clock_scope) (fun elist ->
list_fold_op f_and
(List.mapi
(fun i v -> let x = (id^"."^(string_of_int i)) in
match v with
| NE (v, r) -> BRel(AST_EQ, NIdent x, v, r)
| EE v -> f_e_eq (EIdent x) v)
elist))
expr
else
let typ = type_expr td.rp node expr in
list_fold_op f_and
(List.mapi
(fun i t -> let id_x = id ^ "." ^ string_of_int i in
match t with
| TInt -> BRel(AST_EQ, NIdent(id_x), NIdent ("L"^id_x), false)
| TReal -> BRel(AST_EQ, NIdent(id_x), NIdent ("L"^id_x), true)
| TEnum _ -> f_e_eq (EIdent(id_x)) (EIdent ("L"^id_x)))
typ)
in
let eq_p = f_and_list (List.map pre_expr (extract_pre e)) in
f_and eq_i eq_p
in
let do_eq eq = match fst eq with
| AST_assign(ids, e) ->
let assign_eq =
if active then
let apply_f vs =
let rels =
List.map2 (fun (id, _) ->
let need_r = (type_var td.rp node id = TReal) in
function
| NE (v, r) ->
if r <> need_r then error "Invalid type in numerical assign";
BRel(AST_EQ, NIdent (node^"/"^id),
v, r)
| EE v -> f_e_eq (EIdent (node^"/"^id)) v)
ids vs
in
f_and_list rels
in
f_of_neexpr td (node, prefix, clock_scope) apply_f e
else
BConst true
in
f_and (expr_eq e) assign_eq
| AST_assume (_, e) ->
let assume_eq =
if active then
f_of_expr td (node, prefix, clock_scope) e
else
BConst true
in
f_and (expr_eq e) assume_eq
| AST_guarantee ((id, _), e) ->
let gn = node^"/g_"^id in
let guarantee_eq =
if active && assume_guarantees then
f_and (f_of_expr td (node, prefix, clock_scope) e)
(BEnumCons(E_EQ, gn, EItem bool_true))
else
f_ternary
(f_of_expr td (node, prefix, clock_scope) e)
(BEnumCons(E_EQ, gn, EItem bool_true))
(BEnumCons(E_NE, gn, EItem bool_true))
in
f_and (expr_eq e) guarantee_eq
| AST_activate (b, _) ->
let rec cond_eq = function
| AST_activate_body b -> BConst true
| AST_activate_if(c, a, b) ->
f_and (expr_eq c)
(f_and (cond_eq a) (cond_eq b))
in
let rec do_tree_act = function
| AST_activate_body b ->
let b_scope = node, b.act_id^".", b.body in
let cs2, clock_eq = gen_clock td b_scope true rst_exprs in
f_and clock_eq (f_of_scope true td b_scope cs2 assume_guarantees)
| AST_activate_if(c, a, b) ->
f_ternary
(f_of_expr td (node, prefix, clock_scope) c)
(f_and (do_tree_act a) (do_tree_inact b))
(f_and (do_tree_act b) (do_tree_inact a))
and do_tree_inact = function
| AST_activate_body b ->
let b_scope = node, b.act_id^".", b.body in
let cs2, clock_eq = gen_clock td b_scope false rst_exprs in
f_and clock_eq (f_of_scope false td b_scope cs2 assume_guarantees)
| AST_activate_if(_, a, b) ->
f_and (do_tree_inact a) (do_tree_inact b)
in
f_and (cond_eq b) (if active then do_tree_act b else do_tree_inact b)
| AST_automaton (aid, states, _) ->
let (init_st, _) = List.find (fun (st, _) -> st.initial) states in
let lnstv = "L"^node^"/"^aid^".next_state" in
let nstv = node^"/"^aid^".next_state" in
let stv = node^"/"^aid^".state" in
let st_choice_eq =
f_ternary
(reset_cond rst_exprs)
(f_e_eq (EIdent stv) (EItem init_st.st_name))
(f_e_eq (EIdent stv) (EIdent lnstv))
in
let rst_states = uniq_sorted @@ List.sort compare @@ List.flatten
(List.map (fun (st, _) ->
List.map (fun (_, (id, _), _) -> id)
(List.filter (fun (_, _, rst) -> rst) st.until))
states)
in
let st_eq_inact (st, _) =
let st_scope = node, aid^"."^st.st_name^".", st.body in
let clock_scope, clock_eq = gen_clock td st_scope false rst_exprs in
f_and clock_eq
(f_and
(f_of_scope false td st_scope cs assume_guarantees)
(f_and_list (List.map (fun (c, _, _) -> expr_eq c) st.until)))
in
if active then
let st_eq_act (st, l) =
let act_eq =
let st_scope = node, aid^"."^st.st_name^".", st.body in
let rst_exprs =
if List.mem st.st_name rst_states then
(f_e_eq (EIdent("L"^node^"/"^aid^"."^st.st_name^".must_reset"))
(EItem bool_true))::rst_exprs
else rst_exprs
in
let cs2, clock_eq = gen_clock td st_scope true rst_exprs in
let st_eq = f_and clock_eq (f_of_scope true td st_scope cs2 assume_guarantees) in
let cr, cnr = List.partition
(fun i -> List.exists (fun (_, (v, _), x) -> x && v = i) st.until)
rst_states in
let must_reset_c l f =
f_and_list
(List.map
(fun i -> f_e_eq (EIdent (node^"/"^aid^"."^i^".must_reset"))
(EItem (if f i then bool_true else bool_false)))
l)
in
let rec aux = function
| [] ->
f_and
(must_reset_c cr (fun _ -> false))
(BEnumCons(E_EQ, nstv, EItem st.st_name))
| (c, (target, l), rst)::q ->
let c = f_of_expr td (node, prefix, clock_scope) c in
let b1 =
f_and
(BEnumCons(E_EQ, nstv, EItem target))
(must_reset_c cr (fun i -> rst && i = target))
in
let b2 = aux q in
f_ternary c b1 b2
in
let trans_code = must_reset_c cnr (fun _ -> false) in
let trans_code = f_and trans_code (aux st.until) in
f_and st_eq trans_code
in
if List.length states = 1 then
act_eq
else
f_ternary
(BEnumCons(E_EQ, stv, EItem st.st_name))
act_eq
(st_eq_inact (st, l))
in
f_and st_choice_eq
(f_and_list (List.map st_eq_act states))
else
f_and st_choice_eq
(f_and
(f_and_list
(List.map
(fun s -> let n = node^"/"^aid^"."^s^".must_reset" in
f_e_eq (EIdent n) (EIdent ("L"^n)))
rst_states))
(f_and_list (List.map st_eq_inact states)))
in
f_and_list (List.map do_eq eqs)
and f_of_prog rp assume_guarantees =
let td = {
rp = rp;
consts = I.consts rp;
} in
let prog_normal =
let clock_scope, clock_eq = gen_clock td rp.root_scope true [] in
let scope_f =
f_of_scope
true
td td.rp.root_scope
clock_scope
assume_guarantees in
f_and clock_eq scope_f
in
let prog_init =
let clock_scope, clock_eq =
gen_clock td rp.root_scope true [BConst true] in
let scope_f =
f_of_scope
true
td td.rp.root_scope
clock_scope
assume_guarantees in
f_and clock_eq scope_f
in
prog_init, prog_normal
let f_of_prog_incl_init rp assume_guarantees =
let td = {
rp = rp;
consts = I.consts rp;
} in
let init_cond = BEnumCons(E_EQ, "L/must_reset", EItem bool_true) in
let no_next_init_cond = BEnumCons(E_NE, "/must_reset", EItem bool_true) in
let clock_scope, clock_eq = gen_clock td rp.root_scope true [init_cond] in
let scope_f =
f_of_scope
true
td td.rp.root_scope
clock_scope
assume_guarantees in
f_and clock_eq (f_and no_next_init_cond scope_f)
(*
Get expressions for guarantee violation
*)
let rec g_of_scope td (node, prefix, eqs) clock_scope cond =
let expr_g e =
let instance_g (_, id, eqs, args) =
g_of_scope td (node^"/"^id, "", eqs) clock_scope cond
in
List.fold_left (fun x i -> (instance_g i) @ x)
[] (extract_instances td.rp.p e)
in
let do_eq eq = match fst eq with
| AST_assign(_, e) | AST_assume(_, e) ->
expr_g e
| AST_guarantee((id, _), e) ->
let gn = node^"/g_"^id in
(id,
f_and
cond
(f_of_expr td (node, prefix, clock_scope) (AST_not(e), snd e)),
gn)
:: (expr_g e)
| AST_activate (b, _) ->
let rec cond_g cond = function
| AST_activate_body b ->
let bscope = node, b.act_id^".", b.body in
g_of_scope td bscope (clock_scope_here bscope) cond
| AST_activate_if(c, a, b) ->
(cond_g (f_and cond (f_of_expr td (node, prefix, clock_scope) c)) a) @
(cond_g (f_and cond (f_of_expr td (node, prefix, clock_scope) (AST_not(c), snd c))) b) @
(expr_g c)
in
cond_g cond b
| AST_automaton (aid, states, _) ->
let st_g (st, _) =
let stscope = (node, aid^"."^st.st_name^".", st.body) in
g_of_scope td stscope (clock_scope_here stscope)
(f_and cond (BEnumCons(E_EQ, node^"/"^aid^".state", EItem st.st_name)))
in
List.flatten (List.map st_g states)
in
List.flatten (List.map do_eq eqs)
and guarantees_of_prog rp =
let td = {
rp = rp;
consts = I.consts rp;
} in
g_of_scope td rp.root_scope (clock_scope_here rp.root_scope) (BConst true)