open Ast
open Util
open Ast_util
open Formula
open Interpret (* used for constant evaluation ! *)
(* Transform SCADE program to logical formula. *)
(* node * prefix * equations *)
type scope = id * id * eqn ext list
type transform_data = {
p : Ast.prog;
consts : I.value VarMap.t;
root_scope : scope;
(* future : the automata state *)
}
let f_and a b =
if a = BConst true then b
else if b = BConst true then a
else BAnd(a, b)
(* f_of_nexpr :
transform_data -> (string, string) -> (num_expr list -> 'a) -> expr -> 'a
*)
let rec f_of_nexpr td (node, prefix) where expr =
let sub = f_of_nexpr td (node, prefix) in
match fst expr with
(* ident *)
| AST_identifier(id, _) -> where [NIdent (node^"/"^id)]
| AST_idconst(id, _) ->
begin let x = VarMap.find ("cst/"^id) td.consts in
try where [NIntConst (I.as_int x)]
with _ -> try where [NRealConst (I.as_real x)]
with _ -> error "Invalid data for supposedly numerical constant."
end
(* numerical *)
| AST_int_const(i, _) -> where [NIntConst(int_of_string i)]
| AST_real_const(r, _) -> where [NRealConst(float_of_string r)]
| AST_unary(op, e) ->
sub (function
| [x] -> where [NUnary(op, x)]
| _ -> invalid_arity "Unary operator") e
| AST_binary(op, a, b) ->
sub (function
| [x] ->
sub (function
| [y] -> where [NBinary(op, x, y)]
| _ -> invalid_arity "binary_operator") b
| _ -> invalid_arity "binary operator") a
(* temporal *)
| AST_pre(_, id) -> where [NIdent id]
| AST_arrow(a, b) ->
BOr(
BAnd(BRel(AST_EQ, NIdent(node^"/"^prefix^"time"), NIntConst 0),
sub where a),
BAnd(BRel(AST_GE, NIdent(node^"/"^prefix^"time"), NIntConst 1),
sub where b))
(* other *)
| AST_if(c, a, b) ->
BOr(
BAnd(f_of_bexpr td (node, prefix) c, sub where a),
BAnd(BNot(f_of_bexpr td (node, prefix) c), sub where b))
| AST_instance ((f, _), args, nid) ->
let (n, _) = find_node_decl td.p f in
where (List.map (fun (_, id, _) -> NIdent (node^"/"^nid^"/"^id)) n.ret)
(* boolean values treated as integers *)
| _ ->
BOr(
BAnd ((f_of_bexpr td (node, prefix) expr), where [NIntConst 1]),
BAnd (BNot(f_of_bexpr td (node, prefix) expr), where [NIntConst 0])
)
(* f_of_expr :
transform_data -> (string, string) -> expr -> bool_expr
*)
and f_of_bexpr td (node, prefix) expr =
let sub = f_of_bexpr td (node, prefix) in
match fst expr with
| AST_bool_const b -> BConst b
| AST_binary_bool(AST_AND, a, b) -> BAnd(sub a, sub b)
| AST_binary_bool(AST_OR, a, b) -> BOr(sub a, sub b)
| AST_not(a) -> BNot(sub a)
| AST_binary_rel(rel, a, b) ->
f_of_nexpr td (node, prefix)
(function
| [x] -> f_of_nexpr td (node, prefix)
(function
| [y] -> BRel(rel, x, y)
| _ -> invalid_arity "boolean relation") b
| _ -> invalid_arity "boolean relation")
a
| _ -> loc_error (snd expr) error "Invalid type : expected boolean value"
and f_of_scope active td (node, prefix, eqs) =
let expr_eq e eq =
let instance_eq (_, id, eqs, args) =
let eq = f_of_scope active td (node^"/"^id, "", eqs) in
if active then
List.fold_left (fun eq ((_,argname,_), expr) ->
let eq_arg = f_of_nexpr td (node, prefix) (function
| [v] -> BRel(AST_EQ, NIdent(node^"/"^id^"/"^argname), v)
| _ -> invalid_arity "in argument")
expr
in f_and eq eq_arg)
eq args
else
eq
in
let eq = List.fold_left (fun x i -> f_and (instance_eq i) x)
eq (extract_instances td.p e)
in
let pre_expr (id, expr) =
if active then
f_of_nexpr td (node, prefix) (function
| [v] -> BRel(AST_EQ, NIdent("N"^id), v)
| _ -> invalid_arity "pre on complex data not supported")
expr
else
BRel(AST_EQ, NIdent("N"^id), NIdent id)
in
List.fold_left (fun x i -> f_and (pre_expr i) x)
eq (extract_pre e)
in
let do_eq eq = match fst eq with
| AST_assign(ids, e) ->
let assign_eq =
if active then
f_of_nexpr td (node, prefix)
(fun vs ->
let rels =
List.map2 (fun (id, _) v -> BRel(AST_EQ, NIdent (node^"/"^id), v))
ids vs
in
list_fold_op f_and rels)
e
else
BConst true
in
expr_eq e assign_eq
| AST_assume (_, e) ->
let assume_eq =
if active then
f_of_bexpr td (node, prefix) e
else
BConst true
in
expr_eq e assume_eq
| AST_guarantee (_, e) ->
expr_eq e (BConst true)
| AST_activate (b, _) ->
let rec cond_eq = function
| AST_activate_body b -> BConst true
| AST_activate_if(c, a, b) ->
f_and (expr_eq c (BConst true))
(f_and (cond_eq a) (cond_eq b))
in
let rec do_tree_act = function
| AST_activate_body b ->
f_of_scope true td (node, b.act_id^"_", b.body)
| AST_activate_if(c, a, b) ->
BOr(
f_and (f_of_bexpr td (node, prefix) c)
(f_and (do_tree_act a) (do_tree_inact b)),
f_and (BNot(f_of_bexpr td (node, prefix) c))
(f_and (do_tree_act b) (do_tree_inact a))
)
and do_tree_inact = function
| AST_activate_body b ->
f_of_scope false td (node, b.act_id^"_", b.body)
| AST_activate_if(_, a, b) ->
f_and (do_tree_inact a) (do_tree_inact b)
in
f_and (cond_eq b) (if active then do_tree_act b else do_tree_inact b)
| AST_automaton _ -> not_implemented "f_of_scope do_eq automaton"
in
let time_incr_eq =
if active then
BRel(AST_EQ, NIdent("N"^node^"/"^prefix^"time"),
NBinary(AST_PLUS, NIntConst 1, NIdent(node^"/"^prefix^"time")))
else
BRel(AST_EQ,
NIdent("N"^node^"/"^prefix^"time"),
NIdent(node^"/"^prefix^"time"))
in
List.fold_left f_and
time_incr_eq
(List.map do_eq eqs)
and f_of_prog p root =
let td = {
root_scope = get_root_scope p root;
p = p;
consts = I.consts p root;
} in
f_of_scope true td td.root_scope
let rec init_f_of_scope p (node, prefix, eqs) =
let expr_eq e =
let instance_eq (_, id, eqs, args) =
init_f_of_scope p (node^"/"^id, "", eqs)
in
List.fold_left (fun x i -> f_and (instance_eq i) x)
(BConst true) (extract_instances p e)
in
let do_eq eq = match fst eq with
| AST_assign(_, e) | AST_assume(_, e) | AST_guarantee(_, e) ->
expr_eq e
| AST_activate (b, _) ->
let rec cond_eq = function
| AST_activate_body b ->
init_f_of_scope p (node, b.act_id^"_", b.body)
| AST_activate_if(c, a, b) ->
f_and (expr_eq c)
(f_and (cond_eq a) (cond_eq b))
in
cond_eq b
| AST_automaton _ -> not_implemented "f_of_scope do_eq automaton"
in
let time_eq =
BRel(AST_EQ,
NIdent(node^"/"^prefix^"time"),
NIntConst 0)
in
List.fold_left f_and time_eq (List.map do_eq eqs)
and init_f_of_prog p root =
init_f_of_scope p (get_root_scope p root)