open Ast
open Ast_util
open Formula
open Typing
open Util
open Num_domain
open Abs_interp
let time id f =
Format.printf "%s[@?" id;
let r = f () in
Format.printf "] @?";
r
module I (ND : NUMERICAL_ENVIRONMENT_DOMAIN) : sig
val do_prog : cmdline_opt -> rooted_prog -> unit
val test : unit -> unit
end = struct
(* **********************
EDD Domain
********************** *)
type item = string
type evar = id * item list
type nvar = id * bool
type varenv = {
evars : evar list;
nvars : nvar list;
ev_order : (id, int) Hashtbl.t;
}
type edd =
| DBot
| DVal of int
| DChoice of int * id * (item * edd) list
type edd_v = {
ve : varenv;
root : edd;
leaves : (int, ND.t) Hashtbl.t;
(* add here eventual annotations *)
}
(*
Utility functions for memoization
memo : (('a -> 'b) -> 'a -> 'b) -> 'a -> 'b
-> (int * 'a) -> (int * 'b)
memo2 : (('a -> 'b -> 'c) -> 'a -> 'b -> 'c)
-> 'a -> 'b -> 'c
Where 'a = 'b = 'c = edd, but it can be adapted.
*)
let key = function
| DBot -> None
| DVal i -> Some (Left i)
| DChoice(i, _, _) -> Some (Right i)
let memo f =
let memo = Hashtbl.create 12 in
let rec ff v =
try Hashtbl.find memo (key v)
with Not_found ->
let r = f ff v in
Hashtbl.add memo (key v) r; r
in ff
let memo2 f =
let memo = Hashtbl.create 12 in
let rec ff v1 v2 =
try Hashtbl.find memo (key v1, key v2)
with Not_found ->
let r = f ff v1 v2 in
Hashtbl.add memo (key v1, key v2) r; r
in ff
let edd_node_eq = function
| DBot, DBot -> true
| DVal i, DVal j when i = j -> true
| DChoice(i, _, _), DChoice(j, _, _) when i = j -> true
| _ -> false
(*
edd_print : Format.formatter -> edd_v -> unit
*)
let edd_print fmt v =
let max_n = ref 0 in
let max_v = ref 0 in
let c_nodes = Hashtbl.create 12 in
let rec add = function
| DChoice(n, _, l) as x ->
if not (Hashtbl.mem c_nodes n) then begin
if n > !max_n then max_n := n;
Hashtbl.add c_nodes n x;
List.iter (fun (_, y) -> add y) l
end
| _ -> ()
in add v.root;
let print_n fmt = function
| DBot -> Format.fprintf fmt "⊥";
| DVal i -> if i > !max_v then max_v := i;
Format.fprintf fmt "v%d" i;
| DChoice(n, _, _) -> Format.fprintf fmt "n%d" n
in
Format.fprintf fmt "Root: %a@." print_n v.root;
for id = !max_n downto 0 do
try match Hashtbl.find c_nodes id with
| DChoice (_, var, l) ->
let p fmt (c, l) = Format.fprintf fmt "%s → %a" c print_n l in
Format.fprintf fmt "n%d: %a ? @[<hov>%a@]@."
id Formula_printer.print_id var
(print_list p ", ") l
| _ -> assert false
with Not_found -> ()
done;
for id = 0 to !max_v do
try let v = Hashtbl.find v.leaves id in
Format.fprintf fmt "v%d: %a@." id ND.print v
with Not_found -> ()
done
(*
edd_bot : varenv -> edd_v
*)
let edd_bot ve = { ve; root = DBot; leaves = Hashtbl.create 1 }
(*
edd_top : evar list -> nvar list -> edd_v
*)
let edd_top ve =
let leaves = Hashtbl.create 1 in
Hashtbl.add leaves 0 (ND.top ve.nvars);
{ ve; root = DVal 0; leaves }
(*
edd_of_cons : varenv -> enum_cons -> edd_v
*)
let edd_of_cons ve (op, vid, r) =
let op = match op with | E_EQ -> (=) | E_NE -> (<>) in
let leaves = Hashtbl.create 1 in
Hashtbl.add leaves 0 (ND.top ve.nvars);
let bot, top = DBot, DVal 0 in
let root = match r with
| EItem x ->
DChoice(0, vid,
List.map (fun v -> if op v x then v, top else v, bot)
(List.assoc vid ve.evars))
| EIdent vid2 ->
let a, b =
if Hashtbl.find ve.ev_order vid < Hashtbl.find ve.ev_order vid2
then vid, vid2
else vid2, vid
in
let n = ref 0 in
let nb x =
incr n;
DChoice(!n, b,
List.map (fun v -> if op v x then v, top else v, bot)
(List.assoc b ve.evars))
in
DChoice(0, a, List.map (fun x -> x, nb x) (List.assoc a ve.evars))
in
{ ve; root; leaves }
(*
edd_join : edd_v -> edd_v -> edd_v
*)
let edd_join a b =
let ve = a.ve in
let leaves = Hashtbl.create 12 in
let lc = ref 0 in
let get_leaf x =
let id = ref None in
Hashtbl.iter (fun i v -> if ND.eq v x then id := Some i) leaves;
begin match !id with
| Some i -> DVal i
| None ->
incr lc;
Hashtbl.add leaves !lc x;
DVal (!lc)
end
in
let nc = ref 0 in
let f f_rec na nb =
let dq v l =
let _, x0 = List.hd l in
if List.exists (fun (_, x) -> not (edd_node_eq (x, x0))) l
then begin
incr nc; DChoice(!nc, v, l)
end else x0
in
match na, nb with
| DBot, DBot -> DBot
| DBot, DVal i ->
get_leaf (Hashtbl.find b.leaves i)
| DVal i, DBot ->
get_leaf (Hashtbl.find a.leaves i)
| DVal u, DVal v ->
let x = ND.join (Hashtbl.find a.leaves u) (Hashtbl.find b.leaves v) in
get_leaf x
| DChoice(_, va, la), DChoice(_, vb, lb) when va = vb ->
let kl = List.map2
(fun (ta, ba) (tb, bb) -> assert (ta = tb);
ta, f_rec ba bb)
la lb
in
dq va kl
| DChoice(_, va, la), DChoice(_, vb, lb) ->
let v, kl =
if Hashtbl.find ve.ev_order va < Hashtbl.find ve.ev_order vb then
va, List.map (fun (k, ca) -> k, f_rec ca nb) la
else
vb, List.map (fun (k, cb) -> k, f_rec na cb) lb
in
dq v kl
| DChoice(_,va, la), _ ->
let kl = List.map (fun (k, ca) -> k, f_rec ca nb) la in
dq va kl
| _, DChoice(_, vb, lb) ->
let kl = List.map (fun (k, cb) -> k, f_rec na cb) lb in
dq vb kl
in
{ leaves; ve; root = time "join" (fun () -> memo2 f a.root b.root) }
(*
edd_meet : edd_v -> edd_v -> edd_v
*)
let edd_meet a b =
let ve = a.ve in
let lc = ref 0 in
let leaves = Hashtbl.create 12 in
let get_leaf x =
if ND.is_bot x then DBot else begin
let id = ref None in
Hashtbl.iter (fun i v -> if ND.eq v x then id := Some i) leaves;
match !id with
| Some i -> DVal i
| None ->
incr lc;
Hashtbl.add leaves !lc x;
DVal (!lc)
end
in
let nc = ref 0 in
let f f_rec na nb =
let dq v l =
let _, x0 = List.hd l in
if List.exists (fun (_, x) -> not (edd_node_eq (x, x0))) l
then begin
incr nc; DChoice(!nc, v, l)
end else x0
in
match na, nb with
| DBot, _ | _, DBot -> DBot
| DVal u, DVal v ->
let x = ND.meet (Hashtbl.find a.leaves u) (Hashtbl.find b.leaves v) in
get_leaf x
| DChoice(_, va, la), DChoice(_, vb, lb) when va = vb ->
let kl = List.map2
(fun (ta, ba) (tb, bb) -> assert (ta = tb);
ta, f_rec ba bb)
la lb
in
dq va kl
| DChoice(_, va, la), DChoice(_, vb, lb) ->
let v, kl =
if Hashtbl.find ve.ev_order va < Hashtbl.find ve.ev_order vb then
va, List.map (fun (k, ca) -> k, f_rec ca nb) la
else
vb, List.map (fun (k, cb) -> k, f_rec na cb) lb
in
dq v kl
| DChoice(_, va, la), _ ->
let kl = List.map (fun (k, ca) -> k, f_rec ca nb) la in
dq va kl
| _, DChoice(_, vb, lb) ->
let kl = List.map (fun (k, cb) -> k, f_rec na cb) lb in
dq vb kl
in
{ leaves; ve; root = time "meet" (fun () -> memo2 f a.root b.root) }
(*
edd_num_apply : edd_v -> (ND.t -> ND.t) -> edd_v
edd_apply_ncl : edd_v -> num_cons list -> edd_v
*)
let edd_num_apply v nfun =
let ve = v.ve in
let lc = ref 0 in
let leaves = Hashtbl.create 12 in
let get_leaf x =
if ND.is_bot x then DBot else begin
let id = ref None in
Hashtbl.iter (fun i v -> if ND.eq v x then id := Some i) leaves;
match !id with
| Some i -> DVal i
| None ->
incr lc;
Hashtbl.add leaves !lc x;
DVal (!lc)
end
in
let f f_rec n =
match n with
| DBot -> DBot
| DVal i -> get_leaf (nfun (Hashtbl.find v.leaves i))
| DChoice(n, var, l) ->
let l = List.map (fun (k, v) -> k, f_rec v) l in
let _, x0 = List.hd l in
if List.exists (fun (_, x) -> not (edd_node_eq (x, x0))) l
then DChoice(n, var, l)
else x0
in
{ leaves; ve; root = memo f v.root }
let edd_apply_ncl v ncl =
edd_num_apply v (fun n -> ND.apply_cl n ncl)
(*
edd_apply_ecl : edd_v -> enum_cons list -> edd_v
*)
let edd_apply_ecl v ec =
let rec cl_k = function
| [] -> edd_top v.ve
| [a] -> edd_of_cons v.ve a
| l ->
let n = ref 0 in
let la, lb = List.partition (fun _ -> incr n; !n mod 2 = 0) l in
edd_meet (cl_k la) (cl_k lb)
in
let cons_edd = cl_k ec in
edd_meet v cons_edd
(*
edd_apply_cl : edd_v -> conslist -> edd_v
*)
let rec edd_apply_cl v (ec, nc, r) =
let v = edd_apply_ecl v ec in
match r with
| CLTrue ->
edd_apply_ncl v nc
| CLFalse -> edd_bot v.ve
| CLAnd (a, b) ->
let v = edd_apply_cl v ([], nc, a) in
edd_apply_cl v ([], nc, b)
| CLOr((eca, nca, ra), (ecb, ncb, rb)) ->
edd_join (edd_apply_cl v (eca, nc@nca, ra))
(edd_apply_cl v (ecb, nc@ncb, rb))
(*
edd_eq : edd_v -> edd_v -> bool
*)
let edd_eq a b =
let f f_rec na nb =
match na, nb with
| DBot, DBot -> true
| DVal i, DVal j ->
ND.eq (Hashtbl.find a.leaves i) (Hashtbl.find b.leaves j)
| DChoice(_, va, la), DChoice(_, vb, lb) when va = vb ->
List.for_all2 (fun (ca, na) (cb, nb) -> assert (ca = cb); f_rec na nb)
la lb
| _ -> false
in memo2 f a.root b.root
(*
edd_forget_vars : edd_v -> id list -> edd_v
*)
let edd_forget_vars v vars =
let ve = v.ve in
let leaves = Hashtbl.create 12 in
let lc = ref 0 in
let get_leaf x =
let id = ref None in
Hashtbl.iter (fun i v -> if ND.eq v x then id := Some i) leaves;
begin match !id with
| Some i -> DVal i
| None ->
incr lc;
Hashtbl.add leaves !lc x;
DVal (!lc)
end
in
let nc = ref 0 in
let memo = Hashtbl.create 12 in
let rec f l =
let kl = List.sort Pervasives.compare (List.map key l) in
try Hashtbl.find memo kl
with Not_found -> let r =
let cn, fn = List.fold_left
(fun (cn, fn) node -> match node with
| DBot -> cn, fn
| DVal i -> cn, i::fn
| DChoice (n, v, l) -> (n, v, l)::cn, fn)
([], []) l in
let cn = List.sort
(fun (n, v1, _) (n, v2, _) -> Pervasives.compare
(Hashtbl.find ve.ev_order v1) (Hashtbl.find ve.ev_order v2))
cn in
if cn = [] then
if fn = [] then DBot
else
let x = list_fold_op ND.join
(List.map (Hashtbl.find v.leaves) fn)
in get_leaf x
else
let _, dv, cl = List.hd cn in
let d, nd = List.partition (fun (_, v, _) -> v = dv) cn in
let ch1 = List.map (fun (a, b, c) -> DChoice(a, b, c)) nd in
let ch2 = List.map (fun i -> DVal i) fn in
if List.mem dv vars then
(* Do union of all branches branching from nodes on variable dv *)
let ch3 = List.flatten
(List.map (fun (_, _, c) -> List.map snd c) d) in
f (ch1@ch2@ch3)
else
(* Keep disjunction on variable dv *)
let d, nd = List.partition (fun (_, v, _) -> v = dv) cn in
let cc = List.map
(fun (c, _) ->
let ch3 = List.map (fun (_, _, cl) -> List.assoc c cl) d in
c, f (ch1@ch2@ch3))
cl in
let _, x0 = List.hd cc in
if List.exists (fun (_, x) -> not (edd_node_eq (x, x0))) cc
then begin
incr nc; DChoice(!nc, dv, cc)
end else x0
in Hashtbl.add memo kl r; r
in
{ leaves; ve; root = f [v.root] }
(*
edd_eassign : edd_v -> (id * id) list -> edd_v
*)
let edd_eassign v ids =
let v = edd_forget_vars v (List.map fst ids) in
edd_apply_ecl v
(List.map (fun (x, y) -> (E_EQ, x, EIdent y)) ids)
(*
Just a function to test EDDs
*)
let test () =
let ve = {
evars = ["x", ["tt"; "ff"]; "y", ["tt"; "ff"]; "z", ["tt"; "ff"]];
nvars = [];
ev_order = Hashtbl.create 2 } in
Hashtbl.add ve.ev_order "x" 0;
Hashtbl.add ve.ev_order "y" 1;
Hashtbl.add ve.ev_order "z" 2;
let u = edd_of_cons ve (E_EQ, "x", EIdent "y") in
Format.printf "x = y : @[%a@]@." edd_print u;
let v = edd_of_cons ve (E_NE, "y", EIdent "z") in
Format.printf "y != z : @[%a@]@." edd_print v;
let w = edd_meet u v in
Format.printf "x = y && y != z : @[%a@]@." edd_print w;
let t = edd_join u v in
Format.printf "x = y || y != z : @[%a@]@." edd_print t;
let e = edd_forget_vars w ["y"] in
Format.printf "x = y && y != z ; forget y : @[%a@]@." edd_print e;
let f = edd_forget_vars t ["y"] in
Format.printf "x = y || y != z ; forget y : @[%a@]@." edd_print f
(* ******************************
Abstract interpret
******************************* *)
type env = {
rp : rooted_prog;
opt : cmdline_opt;
ve : varenv;
(* program expressions *)
f : bool_expr;
cl : conslist;
f_g : bool_expr;
cl_g : conslist;
guarantees : (id * bool_expr) list;
(* abstract interpretation *)
cycle : (id * id * typ) list; (* s'(x) = s(y) *)
forget : (id * typ) list; (* s'(x) not specified *)
mutable data : edd_v;
}
(*
pass_cycle : env -> edd_v -> edd_v
*)
let pass_cycle env v =
let assign_e, assign_n = List.fold_left
(fun (ae, an) (a, b, t) -> match t with
| TEnum _ -> (a, b)::ae, an
| TInt | TReal -> ae, (a, NIdent b)::an)
([], []) env.cycle in
let v = edd_eassign v assign_e in
let v = edd_num_apply v (fun nv -> ND.assign nv assign_n) in
let ef, nf = List.fold_left
(fun (ef, nf) (var, t) -> match t with
| TEnum _ -> var::ef, nf
| TReal | TInt -> ef, var::nf)
([], []) env.forget in
let v = edd_forget_vars v ef in
edd_num_apply v (fun nv -> List.fold_left ND.forgetvar nv nf)
(*
extract_linked_evars : conslist -> (id * id) list
Extract all pairs of enum-type variable (x, y) appearing in an
equation like x = y or x != y
A couple may appear several times in the result.
*)
let rec extract_linked_evars_root (ecl, _, r) =
let v_ecl = List.fold_left
(fun c (_, x, v) -> match v with
| EIdent y -> (x, y)::c
| _ -> c)
[] ecl
in
v_ecl
let rec extract_linked_evars(ecl, _, r) =
let v_ecl = List.fold_left
(fun c (_, x, v) -> match v with
| EIdent y -> (x, y)::c
| _ -> c)
[] ecl
in
let v_ecl2 =
let q = List.fold_left
(fun c (_, x, v) -> match v with
| EItem _ -> x::c | _ -> c)
[] ecl
in
match q with
| [x; y] -> [x, y]
| [x; y; z] -> [x, y; y, z; z, x]
| _ -> []
in
let rec aux = function
| CLTrue | CLFalse -> []
| CLAnd(a, b) -> aux a @ aux b
| CLOr(a, b) -> extract_linked_evars a @ extract_linked_evars b
in
v_ecl @ v_ecl2 @ aux r
(*
scope_constrict : id list -> (id * id) list -> id list
Orders the variable in the first argument such as to minimize the
sum of the distance between the position of two variables appearing in
a couple of the second list. (minimisation is approximate, this is
an heuristic so that the EDD will not explode in size when expressing
equations such as x = y && u = v && a != b)
*)
let scope_constrict vars cp_id =
let var_i = Array.of_list vars in
let n = Array.length var_i in
let i_var = Hashtbl.create n in
Array.iteri (fun i v -> Hashtbl.add i_var v i) var_i;
let cp_i = List.map
(fun (x, y) -> Hashtbl.find i_var x, Hashtbl.find i_var y)
cp_id in
let eval i =
let r = Array.make n (-1) in
Array.iteri (fun pos var -> r.(var) <- pos) i;
Array.iteri (fun _ x -> assert (x <> (-1))) r;
List.fold_left
(fun s (x, y) -> s + abs (r.(x) - r.(y)))
0 cp_i
in
let best = Array.make n 0 in
for i = 0 to n-1 do best.(i) <- i done;
let usefull = ref true in
Format.printf "SCA";
while !usefull do
Format.printf ".@?";
usefull := false;
let try_s x =
if eval x < eval best then begin
Array.blit x 0 best 0 n;
usefull := true
end
in
for i = 0 to n-1 do
let tt = Array.copy best in
(* move item i at beginning *)
let temp = tt.(i) in
for j = i downto 1 do tt.(j) <- tt.(j-1) done;
tt.(0) <- temp;
(* try all positions *)
try_s tt;
for j = 1 to n-1 do
let temp = tt.(j-1) in
tt.(j-1) <- tt.(j);
tt.(j) <- temp;
try_s tt
done
done
done;
Format.printf "@.";
Array.to_list (Array.map (Array.get var_i) best)
(*
init_env : cmdline_opt -> rooted_prog -> env
*)
let init_env opt rp =
Format.printf "Vars: @[<hov>%a@]@.@."
(print_list Ast_printer.print_typed_var ", ")
rp.all_vars;
let enum_vars = List.fold_left
(fun v (_, id, t) -> match t with
| TEnum ch -> (id, ch)::v | _ -> v)
[] rp.all_vars in
let num_vars = List.fold_left
(fun v (_, id, t) -> match t with
| TInt -> (id, false)::v | TReal -> (id, true)::v | _ -> v)
[] rp.all_vars in
let init_f = Transform.init_f_of_prog rp in
Format.printf "Init formula: %a@.@." Formula_printer.print_expr init_f;
let init_cl = conslist_of_f init_f in
let guarantees = Transform.guarantees_of_prog rp in
Format.printf "Guarantees:@.";
List.iter (fun (id, f) ->
Format.printf " %s: %a@." id Formula_printer.print_expr f)
guarantees;
Format.printf "@.";
let f = Formula.eliminate_not (Transform.f_of_prog rp false) in
let f_g = Formula.eliminate_not (Transform.f_of_prog rp true) in
Format.printf "Cycle formula:@.%a@.@." Formula_printer.print_expr f;
let cl = Formula.conslist_of_f f in
let cl_g = Formula.conslist_of_f f_g in
(* calculate order for enumerated variables *)
let evars = List.map fst enum_vars in
let lv0 = List.map (fun x -> x, "N"^x)
(List.filter (fun x -> List.exists (fun y -> y = "N"^x) evars) evars) in
let lv1 = extract_linked_evars_root init_cl
@ extract_linked_evars_root cl_g in
let lv2 = extract_linked_evars init_cl @ extract_linked_evars cl_g in
let lv1 = uniq_sorted
(List.sort Pervasives.compare (List.map ord_couple lv1)) in
let lv2 = uniq_sorted
(List.sort Pervasives.compare (List.map ord_couple lv2)) in
let evars_ord = List.rev @@ scope_constrict evars ( lv1 ) in
let ev_order = Hashtbl.create (List.length evars) in
List.iteri (fun i x -> Hashtbl.add ev_order x i) evars_ord;
let ve = { evars = enum_vars; nvars = num_vars; ev_order } in
Format.printf "Order for variables: @[<hov>[%a]@]@."
(print_list Formula_printer.print_id ", ") evars_ord;
(* calculate cycle variables and forget variables *)
let cycle = List.fold_left
(fun q (_, id, ty) ->
if id.[0] = 'N' then
(String.sub id 1 (String.length id - 1), id, ty)::q
else q)
[] rp.all_vars
in
let forget = List.map (fun (_, id, ty) -> (id, ty))
(List.filter
(fun (_, id, _) ->
not (List.exists (fun (_, id2, _) -> id2 = "N"^id) rp.all_vars))
rp.all_vars)
in
(* calculate initial environment *)
let data = edd_apply_cl (edd_top ve) init_cl in
Format.printf "Init: @[<hov>%a@]@." edd_print data;
{ rp; opt; ve;
f; cl; f_g; cl_g; guarantees;
cycle; forget; data }
let do_prog opt rp =
let e = init_env opt rp in
let rec f x =
Format.printf "Apply formula...@.";
let d2 = edd_apply_cl x e.cl in
Format.printf "Pass cycle...@.";
let dc = pass_cycle e d2 in
Format.printf "Join with init...@.";
let dcc = edd_join dc e.data in
Format.printf "@[<hov>%a@]@.@." edd_print dcc;
if not (edd_eq x dcc) then f dcc else dcc
in
let final = edd_apply_cl (f e.data) e.cl in
(*Format.printf "@.Final:@.@[<hov>%a@]@." edd_print final;*)
let check_guarantee (id, f) =
let cl = Formula.conslist_of_f f in
Format.printf "@[<hv 4>%s:@ %a ⇒ ⊥ @ "
id Formula_printer.print_conslist cl;
let z = edd_apply_cl final cl in
if z.root = DBot then
Format.printf "OK@]@ "
else
Format.printf "FAIL@]@ "
in
if e.guarantees <> [] then begin
Format.printf "Guarantee @[<v 0>";
List.iter check_guarantee e.guarantees;
Format.printf "@]@."
end;
end