open Ast
open Ast_util
open Formula
open Typing
open Cmdline
open Util
open Num_domain
exception Top
exception Found_int of int
module I (ND : NUMERICAL_ENVIRONMENT_DOMAIN) : sig
val do_prog : cmdline_opt -> rooted_prog -> unit
val test : unit -> unit
end = struct
(* **********************
EDD Domain
********************** *)
type item = string
type evar = id * item list
type nvar = id * bool
type varenv = {
evars : evar list;
nvars : nvar list;
ev_order : (id, int) Hashtbl.t;
}
type edd =
| DBot
| DTop
| DVal of int * (bool * int) (* bool*int : new case ? iterations before widen ? *)
| DChoice of int * id * (item * edd) list
type edd_v = {
ve : varenv;
root : edd;
leaves : (int, ND.t) Hashtbl.t;
(* add here eventual annotations *)
}
(*
Utility functions for memoization
memo : (('a -> 'b) -> 'a -> 'b) -> 'a -> 'b
-> (int * 'a) -> (int * 'b)
memo2 : (('a -> 'b -> 'c) -> 'a -> 'b -> 'c)
-> 'a -> 'b -> 'c
Where 'a = 'b = 'c = edd, but it can be adapted.
*)
let key = function
| DBot -> 0
| DTop -> 1
| DVal (i, _) -> 2 * i + 2
| DChoice(i, _, _) -> 2 * i + 3
let memo f =
let memo = Hashtbl.create 12 in
let rec ff v =
try Hashtbl.find memo (key v)
with Not_found ->
let r = f ff v in
Hashtbl.add memo (key v) r; r
in ff
let memo2 f =
let memo = Hashtbl.create 12 in
let rec ff v1 v2 =
try Hashtbl.find memo (key v1, key v2)
with Not_found ->
let r = f ff v1 v2 in
Hashtbl.add memo (key v1, key v2) r; r
in ff
let edd_node_eq = function
| DBot, DBot -> true
| DTop, DTop -> true
| DVal (i, _), DVal (j, _) when i = j -> true
| DChoice(i, _, _), DChoice(j, _, _) when i = j -> true
| _ -> false
let new_node_fun () =
let nc = ref 0 in
let node_memo = Hashtbl.create 12 in
fun v l ->
let _, x0 = List.hd l in
if List.exists (fun (_, x) -> not (edd_node_eq (x, x0))) l
then begin
let k = (v, List.map (fun (a, b) -> a, key b) l) in
let n =
try Hashtbl.find node_memo k
with _ -> (incr nc; Hashtbl.add node_memo k !nc; !nc)
in
DChoice(n, v, l)
end else x0
let get_leaf_fun_st () =
let leaves = Hashtbl.create 12 in
let lc = ref 0 in
let get_leaf st x =
if ND.is_top x then DTop else
if ND.is_bot x then DBot else
try
Hashtbl.iter (fun i v -> if ND.eq v x then raise (Found_int i)) leaves;
incr lc;
Hashtbl.add leaves !lc x;
DVal (!lc, st)
with Found_int i -> DVal (i, st)
in leaves, get_leaf
let get_leaf_fun () =
let leaves, get_leaf = get_leaf_fun_st () in
leaves, get_leaf (false, 0)
let rank ve = function
| DChoice(_, x, _) -> Hashtbl.find ve.ev_order x
| _ -> 10000000 (* HYPOTHESIS : program will never have more than
that number of variables *)
(*
edd_print : Format.formatter -> edd_v -> unit
*)
let edd_print fmt v =
let max_v = ref 0 in
let print_nodes = Queue.create () in
let a = Hashtbl.create 12 in
let node_pc = Hashtbl.create 12 in
let f f_rec = function
| DChoice(_, _, l) ->
List.iter
(fun (_, c) -> match c with
| DChoice(n, _, _) ->
begin try Hashtbl.add node_pc n (Hashtbl.find node_pc n + 1)
with Not_found -> Hashtbl.add node_pc n 1 end
| _ -> ())
l;
List.iter (fun (_, c) -> f_rec c) l
| _ -> ()
in memo f v.root;
let rec print_n fmt = function
| DBot -> Format.fprintf fmt "⊥";
| DTop -> Format.fprintf fmt "⊤";
| DVal (i, (s, _)) -> if i > !max_v then max_v := i;
Format.fprintf fmt "v%d%s" i (if s then "*" else "");
| DChoice(_, v, l) ->
match List.filter (fun (_, x) -> x <> DBot) l with
| [(c, nn)] ->
let aux fmt = function
| DChoice(nn, _, _) as i when Hashtbl.find node_pc nn >= 2 ->
if Hashtbl.mem a nn then () else begin
Queue.push i print_nodes;
Hashtbl.add a nn ()
end;
Format.fprintf fmt "n%d" nn
| x -> print_n fmt x
in
Format.fprintf fmt "%a = %s,@ %a" Formula_printer.print_id v c aux nn
| _ ->
Format.fprintf fmt "%a ? " Formula_printer.print_id v;
let print_u fmt (c, i) =
Format.fprintf fmt "%s → " c;
match i with
| DChoice(nn, v, l) ->
if Hashtbl.mem a nn then () else begin
Queue.push i print_nodes;
Hashtbl.add a nn ()
end;
Format.fprintf fmt "n%d" nn
| _ -> Format.fprintf fmt "%a" print_n i
in
Format.fprintf fmt "@[<h>%a@]" (print_list print_u ", ") l;
in
Format.fprintf fmt "@[<hov>%a@]@." print_n v.root;
while not (Queue.is_empty print_nodes) do
match Queue.pop print_nodes with
| DChoice(n, v, l) as x ->
Format.fprintf fmt "n%d: @[<hov>%a@]@." n print_n x
| _ -> assert false
done;
for id = 0 to !max_v do
try let v = Hashtbl.find v.leaves id in
Format.fprintf fmt "v%d: %a@." id ND.print v
with Not_found -> ()
done
let edd_dump_graphviz v file =
let o = open_out file in
let fmt = Format.formatter_of_out_channel o in
Format.fprintf fmt "digraph G {@[<v 4>@,";
let nov = Hashtbl.create 12 in
let f f_rec = function
| DChoice(n, v, x) ->
let aux fmt = function
| DBot -> Format.fprintf fmt "bot"
| DTop -> Format.fprintf fmt "top"
| DVal(i, _) -> Format.fprintf fmt "v%d" i
| DChoice(n, _, _) -> Format.fprintf fmt "n%d" n
in
let p = try Hashtbl.find nov v with _ -> [] in
Hashtbl.replace nov v (n::p);
Format.fprintf fmt "n%d [label=\"%s\"];@ " n v;
List.iter (fun (i, c) ->
if c <> DBot then Format.fprintf fmt "n%d -> %a [label=\"%s\"];@ " n aux c i;
f_rec c) x
| _ -> ()
in memo f v.root;
Hashtbl.iter (fun var nodes ->
Format.fprintf fmt "{ rank = same; ";
List.iter (Format.fprintf fmt "n%d; ") nodes;
Format.fprintf fmt "}@ ")
nov;
Format.fprintf fmt "@]}@.";
close_out o
(*
edd_bot : varenv -> edd_v
*)
let edd_bot ve = { ve; root = DBot; leaves = Hashtbl.create 1 }
(*
edd_top : evar list -> nvar list -> edd_v
*)
let edd_top ve = { ve; root = DTop; leaves = Hashtbl.create 1 }
(*
edd_of_cons : varenv -> enum_cons -> edd_v
*)
let edd_of_cons ve (op, vid, r) =
let op = match op with | E_EQ -> (=) | E_NE -> (<>) in
let leaves = Hashtbl.create 1 in
let root = match r with
| EItem x ->
DChoice(0, vid,
List.map (fun v -> if op v x then v, DTop else v, DBot)
(List.assoc vid ve.evars))
| EIdent vid2 ->
let a, b =
if Hashtbl.find ve.ev_order vid < Hashtbl.find ve.ev_order vid2
then vid, vid2
else vid2, vid
in
let nc = ref 0 in
let nb x =
incr nc;
DChoice(!nc, b,
List.map (fun v -> if op v x then v, DTop else v, DBot)
(List.assoc b ve.evars))
in
DChoice(0, a, List.map (fun x -> x, nb x) (List.assoc a ve.evars))
in
{ ve; root; leaves }
(*
edd_join : edd_v -> edd_v -> edd_v
edd_meet : edd_v -> edd_v -> edd_v
*)
let edd_join a b =
if a.root = DBot then b else
if b.root = DBot then a else
if a.root = DTop || b.root = DTop then edd_top a.ve else begin
let ve = a.ve in
let leaves, get_leaf = get_leaf_fun () in
let dq = new_node_fun () in
let f f_rec na nb =
match na, nb with
| DChoice(_, va, la), DChoice(_, vb, lb) when va = vb ->
let kl = List.map2
(fun (ta, ba) (tb, bb) -> assert (ta = tb);
ta, f_rec ba bb)
la lb
in
dq va kl
| DTop, _ | _, DTop -> DTop
| DBot, DBot -> DBot
| DChoice(_,va, la), _ when rank ve na < rank ve nb ->
let kl = List.map (fun (k, ca) -> k, f_rec ca nb) la in
dq va kl
| _, DChoice(_, vb, lb) when rank ve nb < rank ve na ->
let kl = List.map (fun (k, cb) -> k, f_rec na cb) lb in
dq vb kl
| DVal (u, _), DVal (v, _) ->
let x = ND.join (Hashtbl.find a.leaves u) (Hashtbl.find b.leaves v) in
get_leaf x
| DVal(u, _), DBot ->
get_leaf (Hashtbl.find a.leaves u)
| DBot, DVal(v, _) ->
get_leaf (Hashtbl.find b.leaves v)
| _ -> assert false (* so that OCaml won't complain ; all cases ARE handled *)
in
{ leaves; ve; root = time "join" (fun () -> memo2 f a.root b.root) }
end
let edd_meet a b =
if a.root = DTop then b else
if b.root = DTop then a else
if a.root = DBot || b.root = DBot then edd_bot a.ve else begin
let ve = a.ve in
let leaves, get_leaf = get_leaf_fun () in
let dq = new_node_fun () in
let f f_rec na nb =
match na, nb with
| DChoice(_, va, la), DChoice(_, vb, lb) when va = vb ->
let kl = List.map2
(fun (ta, ba) (tb, bb) -> assert (ta = tb);
ta, f_rec ba bb)
la lb
in
dq va kl
| DBot, _ | _, DBot -> DBot
| DTop, DTop -> DTop
| DChoice(_, va, la), _ when rank ve na < rank ve nb ->
let kl = List.map (fun (k, ca) -> k, f_rec ca nb) la in
dq va kl
| _, DChoice(_, vb, lb) when rank ve nb < rank ve na ->
let kl = List.map (fun (k, cb) -> k, f_rec na cb) lb in
dq vb kl
| DVal (u, _) , DVal (v, _) ->
let x = ND.meet (Hashtbl.find a.leaves u) (Hashtbl.find b.leaves v) in
get_leaf x
| DVal(u, _), DTop ->
get_leaf (Hashtbl.find a.leaves u)
| DTop, DVal(v, _) ->
get_leaf (Hashtbl.find b.leaves v)
| _ -> assert false (* see above *)
in
{ leaves; ve; root = time "meet" (fun () -> memo2 f a.root b.root) }
end
(*
edd_num_apply : edd_v -> (ND.t -> ND.t) -> edd_v
edd_apply_ncl : edd_v -> num_cons list -> edd_v
*)
let edd_num_apply v nfun =
let ve = v.ve in
let leaves, get_leaf = get_leaf_fun () in
let dq = new_node_fun () in
let f f_rec n =
match n with
| DBot -> DBot
| DTop -> get_leaf (nfun (ND.top ve.nvars))
| DVal (i, _) -> get_leaf (nfun (Hashtbl.find v.leaves i))
| DChoice(n, var, l) ->
let l = List.map (fun (k, v) -> k, f_rec v) l in
dq var l
in
{ leaves; ve; root = memo f v.root }
let edd_apply_ncl v ncl =
edd_num_apply v (fun n -> ND.apply_cl n ncl)
(*
edd_apply_ecl : edd_v -> enum_cons list -> edd_v
*)
let edd_apply_ecl v ec =
let rec cl_k = function
| [] -> edd_top v.ve
| [a] -> edd_of_cons v.ve a
| l ->
let n = ref 0 in
let la, lb = List.partition (fun _ -> incr n; !n mod 2 = 0) l in
edd_meet (cl_k la) (cl_k lb)
in
let cons_edd = cl_k ec in
edd_meet v cons_edd
(*List.fold_left (fun v c -> edd_meet v (edd_of_cons v.ve c)) v ec*)
(*
edd_apply_cl : edd_v -> conslist -> edd_v
*)
let rec edd_apply_cl v (ec, nc, r) =
let v = edd_apply_ecl v ec in
match r with
| CLTrue ->
edd_apply_ncl v nc
| CLFalse -> edd_bot v.ve
| CLAnd (a, b) ->
let v = edd_apply_cl v ([], nc, a) in
if v.root = DBot then v else
edd_apply_cl v ([], nc, b)
| CLOr((eca, nca, ra), (ecb, ncb, rb)) ->
edd_join (edd_apply_cl v (eca, nc@nca, ra))
(edd_apply_cl v (ecb, nc@ncb, rb))
(*
edd_extract_path : edd_v -> id -> edd_v
*)
let edd_extract_path v leaf_id =
let ve = v.ve in
let dq = new_node_fun () in
let f f_rec n =
match n with
| DVal (i, _) when i = leaf_id -> DTop
| DChoice(n, var, l) ->
let l = List.map (fun (k, v) -> k, f_rec v) l in
dq var l
| _ -> DBot
in
{ leaves = Hashtbl.create 1; ve; root = memo f v.root }
(*
edd_eq : edd_v -> edd_v -> bool
*)
let edd_eq a b =
let f f_rec na nb =
match na, nb with
| DBot, DBot -> true
| DTop, DTop -> true
| DVal (i, _), DVal (j, _) ->
ND.eq (Hashtbl.find a.leaves i) (Hashtbl.find b.leaves j)
| DChoice(_, va, la), DChoice(_, vb, lb) when va = vb ->
List.for_all2 (fun (ca, na) (cb, nb) -> assert (ca = cb); f_rec na nb)
la lb
| _ -> false
in memo2 f a.root b.root
(*
edd_subset : edd_v -> edd_v -> bool
*)
let edd_subset a b =
let rank = rank a.ve in
let f f_rec na nb =
match na, nb with
| DBot, _ -> true
| _, DTop -> true
| DTop, DBot -> false
| DVal(i, _), DBot -> ND.is_bot (Hashtbl.find a.leaves i)
| DTop, DVal(i, _) -> ND.is_top (Hashtbl.find b.leaves i)
| DVal(i, _), DVal(j, _) ->
ND.subset (Hashtbl.find a.leaves i) (Hashtbl.find b.leaves j)
| DChoice(_, va, la), DChoice(_, vb, lb) when va = vb ->
List.for_all2 (fun (ca, na) (cb, nb) -> assert (ca = cb); f_rec na nb)
la lb
| DChoice(_, va, la), _ when rank na < rank nb ->
List.for_all (fun (c, n) -> f_rec n nb) la
| _, DChoice(_, vb, lb) when rank na > rank nb ->
List.for_all (fun (c, n) -> f_rec na n) lb
| _ -> assert false
in memo2 f a.root b.root
(*
edd_forget_vars : edd_v -> id list -> edd_v
*)
let edd_forget_vars v vars =
let ve = v.ve in
let leaves, get_leaf = get_leaf_fun () in
let nc = ref 0 in
let memo = Hashtbl.create 12 in
let node_memo = Hashtbl.create 12 in
let rec f l =
let kl = List.sort Pervasives.compare (List.map key l) in
try Hashtbl.find memo kl
with Not_found -> let r =
try
let cn, fn = List.fold_left
(fun (cn, fn) node -> match node with
| DBot -> cn, fn
| DTop -> raise Top
| DVal (i, _) -> cn, i::fn
| DChoice (n, v, l) -> (n, v, l)::cn, fn)
([], []) l in
let cn = List.sort
(fun (n, v1, _) (n, v2, _) -> Pervasives.compare
(Hashtbl.find ve.ev_order v1) (Hashtbl.find ve.ev_order v2))
cn in
if cn = [] then
if fn = [] then DBot
else
let x = list_fold_op ND.join
(List.map (Hashtbl.find v.leaves) fn)
in get_leaf x
else
let _, dv, cl = List.hd cn in
let d, nd = List.partition (fun (_, v, _) -> v = dv) cn in
let ch1 = List.map (fun (a, b, c) -> DChoice(a, b, c)) nd in
let ch2 = List.map (fun i -> DVal (i, (false, 0))) fn in
if List.mem dv vars then
(* Do union of all branches branching from nodes on variable dv *)
let ch3 = List.flatten
(List.map (fun (_, _, c) -> List.map snd c) d) in
f (ch1@ch2@ch3)
else
(* Keep disjunction on variable dv *)
let d, nd = List.partition (fun (_, v, _) -> v = dv) cn in
let cc = List.map
(fun (c, _) ->
let ch3 = List.map (fun (_, _, cl) -> List.assoc c cl) d in
c, f (ch1@ch2@ch3))
cl in
let _, x0 = List.hd cc in
if List.exists (fun (_, x) -> not (edd_node_eq (x, x0))) cc
then begin
let k = (dv, List.map (fun (a, b) -> a, key b) cc) in
let n =
try Hashtbl.find node_memo k
with _ -> (incr nc; Hashtbl.add node_memo k !nc; !nc)
in
DChoice(n, dv, cc)
end else x0
with | Top -> DTop
in Hashtbl.add memo kl r; r
in
{ leaves; ve; root = f [v.root] }
(*
edd_eassign : edd_v -> (id * id) list -> edd_v
*)
let edd_eassign v ids =
let v = edd_forget_vars v (List.map fst ids) in
edd_apply_ecl v
(List.map (fun (x, y) -> (E_EQ, x, EIdent y)) ids)
(*
Just a function to test EDDs
*)
let test () =
let ve = {
evars = ["x", ["tt"; "ff"]; "y", ["tt"; "ff"]; "z", ["tt"; "ff"]];
nvars = [];
ev_order = Hashtbl.create 2 } in
Hashtbl.add ve.ev_order "x" 0;
Hashtbl.add ve.ev_order "y" 1;
Hashtbl.add ve.ev_order "z" 2;
let u = edd_of_cons ve (E_EQ, "x", EIdent "y") in
Format.printf "x = y : @[%a@]@." edd_print u;
let v = edd_of_cons ve (E_NE, "y", EIdent "z") in
Format.printf "y != z : @[%a@]@." edd_print v;
let w = edd_meet u v in
Format.printf "x = y && y != z : @[%a@]@." edd_print w;
let t = edd_join u v in
Format.printf "x = y || y != z : @[%a@]@." edd_print t;
let e = edd_forget_vars w ["y"] in
Format.printf "x = y && y != z ; forget y : @[%a@]@." edd_print e;
let f = edd_forget_vars t ["y"] in
Format.printf "x = y || y != z ; forget y : @[%a@]@." edd_print f
(* ******************************
Abstract interpret
******************************* *)
type env = {
rp : rooted_prog;
opt : cmdline_opt;
last_vars : (bool * id * typ) list;
all_vars : (bool * id * typ) list;
ve : varenv;
(* program expressions *)
init_cl : conslist;
cl : conslist;
cl_g : conslist;
guarantees : (id * bool_expr) list;
(* abstract interpretation *)
cycle : (id * id * typ) list; (* s'(x) = s(y) *)
forget : (id * typ) list; (* s'(x) not specified *)
}
(*
edd_find_starred : edd_v -> int option
edd_unstar : edd_v -> int -> edd_v
*)
let edd_find_starred v =
let f f_rec = function
| DVal (i, (true, _)) -> raise (Found_int i)
| DChoice(_, _, l) -> List.iter (fun (_, x) -> f_rec x) l
| _ -> ()
in
try memo f v.root; None
with Found_int i -> Some i
let edd_unstar v i =
let f f_rec = function
| DChoice(a, b, l) -> DChoice(a, b, List.map (fun (c, x) -> c, f_rec x) l)
| DVal(j, (s, n)) when i = j -> DVal(i, (false, n))
| x -> x
in
{ v with root = memo f v.root }
(*
edd_join_widen : edd_v -> edd_v -> edd_v
*)
let edd_widen (a:edd_v) (b:edd_v) =
let ve = a.ve in
let leaves, get_leaf = get_leaf_fun () in
let dq = new_node_fun () in
let f f_rec na nb =
match na, nb with
| DTop, _ | _, DTop -> DTop
| DBot, DBot -> DBot
| DChoice(_, va, la), DChoice(_, vb, lb) when va = vb ->
let kl = List.map2
(fun (ta, ba) (tb, bb) -> assert (ta = tb);
ta, f_rec ba bb)
la lb
in
dq va kl
| DBot, DVal (i, _) ->
get_leaf (Hashtbl.find b.leaves i)
| DVal (i, _), DBot ->
get_leaf (Hashtbl.find a.leaves i)
| DVal (u, _), DVal (v, _) ->
let p1, p2 = edd_extract_path a u, edd_extract_path b v in
let widen =
if edd_eq p1 p2 then true else false
in
let x = (if widen then ND.widen else ND.join)
(Hashtbl.find a.leaves u) (Hashtbl.find b.leaves v) in
get_leaf x
| DChoice(_,va, la), _ when rank ve na < rank ve nb ->
let kl = List.map (fun (k, ca) -> k, f_rec ca nb) la in
dq va kl
| _, DChoice(_, vb, lb) when rank ve nb < rank ve na ->
let kl = List.map (fun (k, cb) -> k, f_rec na cb) lb in
dq vb kl
| _ -> assert false
in
{ leaves; ve; root = time "join/W" (fun () -> memo2 f a.root b.root) }
(*
edd_accumulate : edd_v -> edd_v -> edd_v
Sometimes do global widening.
*)
let edd_accumulate env (a:edd_v) (b:edd_v) =
let ve = a.ve in
let leaves, get_leaf = get_leaf_fun_st () in
let dq = new_node_fun () in
let f f_rec na nb =
match na, nb with
| DTop, _ | _, DTop -> DTop
| DBot, DBot -> DBot
| DChoice(_, va, la), DChoice(_, vb, lb) when va = vb ->
let kl = List.map2
(fun (ta, ba) (tb, bb) -> assert (ta = tb);
ta, f_rec ba bb)
la lb
in
dq va kl
| DBot, DVal (i, _) ->
get_leaf (true, 0) (Hashtbl.find b.leaves i)
| DVal (i, s), DBot ->
get_leaf s (Hashtbl.find a.leaves i)
| DVal (u, (s1, i1)), DVal (v, _) ->
let p1, p2 = edd_extract_path a u, edd_extract_path b v in
let d1, d2 = Hashtbl.find a.leaves u, Hashtbl.find b.leaves v in
let widen = edd_eq p1 p2 && i1 >= env.opt.widen_delay in
let x = (if widen then ND.widen else ND.join) d1 d2 in
get_leaf (s1, i1 + 1) x
| DChoice(_,va, la), _ when rank ve na < rank ve nb ->
let kl = List.map (fun (k, ca) -> k, f_rec ca nb) la in
dq va kl
| _, DChoice(_, vb, lb) when rank ve nb < rank ve na ->
let kl = List.map (fun (k, cb) -> k, f_rec na cb) lb in
dq vb kl
| _ -> assert false
in
{ leaves; ve; root = time "join/*" (fun () -> memo2 f a.root b.root) }
(*
edd_star_new : edd_v -> edd_v -> edd_v
Star in s leaves that were not present in s0
*)
let edd_star_new s0 s =
let f f_rec = function
| DChoice(n, x, l) ->
DChoice(n, x, List.map (fun (c, x) -> c, f_rec x) l)
| DVal(i, (false, n)) when
not (edd_subset (edd_meet (edd_extract_path s i) s) s0)
->
DVal(i, (true, n))
| x -> x
in
{ s with root = memo f s.root }
(*
pass_cycle : env -> edd_v -> edd_v
unpass_cycle : env -> edd_v -> edd_v
*)
let pass_cycle env v =
let assign_e, assign_n = List.fold_left
(fun (ae, an) (a, b, t) -> match t with
| TEnum _ -> (a, b)::ae, an
| TInt | TReal -> ae, (a, NIdent b)::an)
([], []) env.cycle in
let v = edd_eassign v assign_e in
let v = edd_num_apply v (fun nv -> ND.assign nv assign_n) in
let ef, nf = List.fold_left
(fun (ef, nf) (var, t) -> match t with
| TEnum _ -> var::ef, nf
| TReal | TInt -> ef, var::nf)
([], []) env.forget in
let v = edd_forget_vars v ef in
edd_num_apply v (fun nv -> List.fold_left ND.forgetvar nv nf)
let unpass_cycle env v =
let assign_e, assign_n = List.fold_left
(fun (ae, an) (a, b, t) -> match t with
| TEnum _ -> (b, a)::ae, an
| TInt | TReal -> ae, (b, NIdent a)::an)
([], []) env.cycle in
let v = edd_eassign v assign_e in
let v = edd_num_apply v (fun nv -> ND.assign nv assign_n) in
let ef, nf = List.fold_left
(fun (ef, nf) (_, var, t) ->
if var.[0] <> 'N' then
match t with
| TEnum _ -> var::ef, nf
| TReal | TInt -> ef, var::nf
else ef, nf)
([], []) env.rp.all_vars in
let v = edd_forget_vars v ef in
edd_num_apply v (fun nv -> List.fold_left ND.forgetvar nv nf)
(*
extract_linked_evars : conslist -> (id * id) list
Extract all pairs of enum-type variable (x, y) appearing in an
equation like x = y or x != y
A couple may appear several times in the result.
*)
let rec extract_linked_evars_root (ecl, _, r) =
let v_ecl = List.fold_left
(fun c (_, x, v) -> match v with
| EIdent y -> (x, y)::c
| _ -> c)
[] ecl
in
v_ecl
let rec extract_const_vars_root (ecl, _, _) =
List.fold_left
(fun l (_, x, v) -> match v with
| EItem _ -> x::l
| _ -> l)
[] ecl
(*
scope_constrict : id list -> (id * id) list -> id list
Orders the variable in the first argument such as to minimize the
sum of the distance between the position of two variables appearing in
a couple of the second list. (minimisation is approximate, this is
an heuristic so that the EDD will not explode in size when expressing
equations such as x = y && u = v && a != b)
*)
let scope_constrict vars cp_id =
let var_i = Array.of_list vars in
let n = Array.length var_i in
let i_var = Hashtbl.create n in
Array.iteri (fun i v -> Hashtbl.add i_var v i) var_i;
let cp_i = List.map
(fun (x, y) -> Hashtbl.find i_var x, Hashtbl.find i_var y)
cp_id in
let eval i =
let r = Array.make n (-1) in
Array.iteri (fun pos var -> r.(var) <- pos) i;
Array.iteri (fun _ x -> assert (x <> (-1))) r;
List.fold_left
(fun s (x, y) -> s + abs (r.(x) - r.(y)))
0 cp_i
in
let best = Array.init n (fun i -> i) in
let usefull = ref true in
Format.printf "SCA";
while !usefull do
Format.printf ".@?";
usefull := false;
let try_s x =
if eval x < eval best then begin
Array.blit x 0 best 0 n;
usefull := true
end
in
for i = 0 to n-1 do
let tt = Array.copy best in
(* move item i at beginning *)
let temp = tt.(i) in
for j = i downto 1 do tt.(j) <- tt.(j-1) done;
tt.(0) <- temp;
(* try all positions *)
try_s tt;
for j = 1 to n-1 do
let temp = tt.(j-1) in
tt.(j-1) <- tt.(j);
tt.(j) <- temp;
try_s tt
done
done
done;
Format.printf "@.";
Array.to_list (Array.map (Array.get var_i) best)
(*
force_ordering : id list -> (float * id list) list -> id list
Determine a good ordering for enumerate variables based on the FORCE algorithm
*)
let force_ordering vars groups =
let var_i = Array.of_list vars in
let n = Array.length var_i in
let i_var = Hashtbl.create n in
Array.iteri (fun i v -> Hashtbl.add i_var v i) var_i;
Hashtbl.add i_var "#BEGIN" (-1);
let ngroups = List.map
(fun (w, l) -> w, List.map (Hashtbl.find i_var) l)
groups in
let ord = Array.init n (fun i -> i) in
for iter = 0 to 500 do
let rev = Array.make n (-1) in
for i = 0 to n-1 do rev.(ord.(i)) <- i done;
let bw = Array.make n 0. in
let w = Array.make n 0. in
let gfun (gw, l) =
let sp = List.fold_left (+.) 0.
(List.map
(fun i -> if i = -1 then -.gw else float_of_int (rev.(i))) l)
in
let b = sp /. float_of_int (List.length l) in
List.iter (fun i -> if i >= 0 then begin
bw.(i) <- bw.(i) +. (gw *. b);
w.(i) <- w.(i) +. gw end)
l
in
List.iter gfun ngroups;
let b = Array.init n
(fun i ->
if w.(i) = 0. then
float_of_int i
else bw.(i) /. w.(i)) in
let ol = List.sort
(fun i j -> Pervasives.compare b.(i) b.(j))
(Array.to_list ord) in
Array.blit (Array.of_list ol) 0 ord 0 n
done;
List.map (Array.get var_i) (Array.to_list ord)
(*
init_env : cmdline_opt -> rooted_prog -> env
*)
let init_env opt rp =
let init_f, f = Transform.f_of_prog rp false in
let _, f_g = Transform.f_of_prog rp true in
Format.printf "Init formula:@.%a@.@." Formula_printer.print_expr init_f;
Format.printf "Cycle formula:@.%a@.@." Formula_printer.print_expr f;
let cl = Formula.conslist_of_f f in
let cl_g = Formula.conslist_of_f f_g in
let init_cl = Formula.conslist_of_f init_f in
Format.printf "Cycle conslist:@.%a@.@." Formula_printer.print_conslist cl;
let guarantees = Transform.guarantees_of_prog rp in
Format.printf "Guarantees:@.";
List.iter (fun (id, f) ->
Format.printf " %s: %a@." id Formula_printer.print_expr f)
guarantees;
Format.printf "@.";
(* add variables from LASTs *)
let last_vars = uniq_sorted (List.sort compare (Transform.extract_last_vars f_g)) in
let last_vars = List.map
(fun id ->
let (_, _, ty) = List.find (fun (_, u, _) -> id = "L"^u) rp.all_vars
in false, id, ty)
last_vars in
let all_vars = last_vars @ rp.all_vars in
Format.printf "Vars: @[<hov>%a@]@.@."
(print_list Ast_printer.print_typed_var ", ")
all_vars;
let num_vars, enum_vars = List.fold_left
(fun (nv, ev) (_, id, t) -> match t with
| TEnum ch -> nv, (id, ch)::ev
| TInt -> (id, false)::nv, ev
| TReal -> (id, true)::nv, ev)
([], []) all_vars in
(* calculate order for enumerated variables *)
let evars = List.map fst enum_vars in
let lv = extract_linked_evars_root cl_g in
let lv = uniq_sorted
(List.sort Pervasives.compare (List.map ord_couple lv)) in
let lv_f = List.map (fun (a, b) -> (1.0, [a; b])) lv in
let lv_f = lv_f @ (List.map (fun v -> (10.0, ["#BEGIN"; v]))
(extract_const_vars_root cl)) in
let lv_f = lv_f @ (List.map (fun v -> (5.0, ["#BEGIN"; v]))
(List.filter (fun n -> is_suffix n "init") evars)) in
let lv_f = lv_f @ (List.map (fun v -> (3.0, ["#BEGIN"; v]))
(List.filter (fun n -> is_suffix n "state") evars)) in
let lv_f = lv_f @
(List.map (fun v -> (0.7, [v; "L"^v]))
(List.filter (fun n -> List.mem ("L"^n) evars) evars)) in
let evars_ord =
if true then
time "FORCE" (fun () -> force_ordering evars lv_f)
else
time "SCA" (fun () -> scope_constrict evars lv)
in
let evars_ord =
if false then
let va, vb = List.partition (fun n -> is_suffix n "init") evars_ord in
let vb, vc = List.partition (fun n -> is_suffix n "state") vb in
(List.rev va) @ vb @ vc
else
evars_ord
in
let ev_order = Hashtbl.create (List.length evars) in
List.iteri (fun i x -> Hashtbl.add ev_order x i) evars_ord;
let ve = { evars = enum_vars; nvars = num_vars; ev_order } in
Format.printf "Order for variables: @[<hov>[%a]@]@."
(print_list Formula_printer.print_id ", ") evars_ord;
(* calculate cycle variables and forget variables *)
let cycle = List.fold_left
(fun q (_, id, ty) ->
if id.[0] = 'L' then
(id, String.sub id 1 (String.length id - 1), ty)::q
else q)
[] last_vars
in
let forget = List.map (fun (_, id, ty) -> (id, ty)) rp.all_vars in
{ rp; opt; ve; last_vars; all_vars;
init_cl; cl; cl_g; guarantees;
cycle; forget }
let do_prog opt rp =
let e = init_env opt rp in
(* Do iterations until fixpoint is reached *)
let rec ch_it n x =
edd_dump_graphviz x (Format.sprintf "/tmp/graph-it%d.dot" n);
match edd_find_starred x with
| None ->
Format.printf "It. %d : full iteration.@." n;
let d2 = edd_apply_cl x e.cl in
let dc = pass_cycle e d2 in
if dc.root = DBot then begin
Format.printf "@.WARNING: contradictory hypotheses!@.@.";
x
end else begin
let y = edd_star_new x (edd_accumulate e x dc) in
if e.opt.vverbose_ci then
Format.printf "d2 %a@. dc %a@. y %a@."
edd_print d2 edd_print dc edd_print y;
if e.opt.verbose_ci then
Format.printf " -> %a@." edd_print y;
if not (edd_eq x y) then ch_it (n+1) y else y
end
| Some i ->
let path = edd_extract_path x i in
let x = edd_unstar x i in
Format.printf "It. %d: @[<hov>%a@]@." n edd_print path;
let path_target = unpass_cycle e path in
let start = edd_meet path x in
let f i =
let i = edd_meet path i in
let i' = edd_meet i path_target in
let j = edd_apply_cl i' e.cl in
if e.opt.vverbose_ci then
Format.printf "i %a@.i' %a@.j %a@."
edd_print i edd_print i' edd_print j;
let q = edd_join start (pass_cycle e j) in
edd_meet path q
in
let rec iter n i =
let fi = f i in
let j =
if n < e.opt.widen_delay then
edd_join i fi
else
edd_widen i fi
in
if edd_eq i j then j else iter (n+1) j
in
let y = iter 0 start in
let z = fix edd_eq f y in
let fj = pass_cycle e (edd_apply_cl z e.cl) in
if fj.root = DBot then begin
Format.printf "@.WARNING: contradictory hypotheses!@.@.";
x
end else begin
let r = edd_star_new x (edd_accumulate e x fj) in
if e.opt.verbose_ci then
Format.printf " -> %a@." edd_print r;
ch_it (n+1) r
end
in
Format.printf "Calculating initial state...@.";
let init_acc = edd_star_new (edd_bot e.ve)
(pass_cycle e (edd_apply_cl (edd_top e.ve) e.init_cl)) in
(* Dump final state *)
let acc = ch_it 0 init_acc in
edd_dump_graphviz acc "/tmp/graph-final0.dot";
Format.printf "Finishing up...@.";
let final = edd_apply_cl acc e.cl in
edd_dump_graphviz final "/tmp/graph-final.dot";
if e.opt.verbose_ci then
Format.printf "@.Final:@.@[<hov>%a@]@." edd_print final;
(* Check guarantees *)
let check_guarantee (id, f) =
let cl = Formula.conslist_of_f f in
Format.printf "@[<hv 4>%s:@ %a ⇒ ⊥ @ "
id Formula_printer.print_conslist cl;
let z = edd_apply_cl final cl in
if z.root = DBot then
Format.printf "OK@]@ "
else
Format.printf "FAIL@]@ "
in
if e.guarantees <> [] then begin
Format.printf "Guarantee @[<v 0>";
List.iter check_guarantee e.guarantees;
Format.printf "@]@."
end;
(* Examine probes *)
if List.exists (fun (p, _, _) -> p) e.all_vars then begin
let final_flat = edd_forget_vars final
(List.fold_left
(fun l (_, id, ty) -> match ty with
| TInt | TReal -> l
| TEnum _ -> id::l)
[] e.all_vars) in
let final_flat = match final_flat.root with
| DTop -> ND.top e.ve.nvars
| DBot -> ND.bottom e.ve.nvars
| DVal(i, _) -> Hashtbl.find final_flat.leaves i
| DChoice _ -> assert false
in
Format.printf "Probes: @[<v 0>";
List.iter (fun (p, id, ty) ->
if p then match ty with
| TInt | TReal ->
Format.printf "%a ∊ %a@." Formula_printer.print_id id
ND.print_itv (ND.project final_flat id)
| TEnum _ -> Format.printf "%a : enum variable@."
Formula_printer.print_id id)
e.all_vars;
Format.printf "@]@."
end
end