summaryrefslogblamecommitdiff
path: root/abstract/abs_interp_dynpart.ml
blob: bbd8d19038adb137ee6a026ae68b539230f6543f (plain) (tree)




















                                                                           








                                                                              
                     
                              
                              
 
                                
                               
 

                                    

                                            

                                
 

                                   


                                    









                                    
                                                   















                                                            
                                                  




                                 
                                                                            


                                    
                                     

                                    



                                                             
 



                                                              
 




                                                            
                                             

      


                                       


                                         

                                

                                                               

      


                                              




                                                         
             
































                                                                                 

















                                                                               
                                         




















                                                                                   
                                                             











                                                                                     


                                                                  
                                      
                                    



                                                                       
                                                                 





                                                                              


































                                                                                  



           



                                                         
                                          


                 









































                                                                   
      


                              






                                                                  



                               
                                                                                               
                                                                             
                                                    




                                                                                    


                                                      
                                          



                               
                                                                                    

                                                                            
                                                                
                                                                             










                                                                                  

                
                                 


                   
      











                                                              
                          






                                               
                              
 











                                                              
                                                       
                                                    

                              
                                                   
                          



                                                  


                            
                                             
                           
                    
                            
              


                               

                                 
                        



                                                                            




                          
                                          

                                                                                         


                                                                         



                                                   
                                                       
                                                         
                                             
                        
                                               
                                               






                                               










                                                                 

                                                  



                                                          
                               


                                                          

                                                                   

                


                     

 



                                  



                                                               
                                                                             


                              










                                                                            
                      



                                                                     
                      











































                                                                                                     
                                            








                                                                       
                               
                        












                                                                                                
                                            


                                                             















                                                                                                      





                                                                        
                              























                                                                                                                       
                          

                                                                                     
                                                                                
                          




















                                                                                                       
 

                          
                                                                      
                                                     
                                                                
                                                            




                                               
                                                        





                                                                

                                                







                                                         
             


                              
                                        





                                                 


                                               











                                                                                   


















                                                                     



           
   
open Ast
open Ast_util
open Formula
open Typing
open Cmdline

open Util
open Num_domain
open Enum_domain

open Varenv

module I (ED : ENUM_ENVIRONMENT_DOMAIN) (ND : NUMERICAL_ENVIRONMENT_DOMAIN)
: sig

    val do_prog : cmdline_opt -> rooted_prog -> unit

end = struct

    type abs_v = ED.t * ND.t

    (*
      Abstract analysis based on dynamic partitionning of the state space.
      Idea : use somme conditions appearing in the text of the program as
      disjunctions. We don't want to consider them all at once  in the first
      place because it would be way too costly ; instead we try to dynamically
      partition tye system. But we haven't got a very good heuristic for that,
      so it doesn't work very well.
    *)

    type location = {
        id              : int;
        depth           : int;

        mutable def     : abs_v;
        is_init         : bool;

        mutable f       : bool_expr;
        mutable cl      : conslist;

        (* For chaotic iteration fixpoint *)
        mutable in_c    : int;
        mutable v       : abs_v;

        mutable out_t   : int list;
        mutable in_t    : int list;

        mutable verif_g   : id list;
        mutable violate_g : id list;
    }

    type env = {
        rp            : rooted_prog;
        opt           : cmdline_opt;

        ve            : varenv;

        (* program expressions *)
        f             : bool_expr;
        guarantees    : (id * bool_expr * id) list;

        (* data *)
        loc           : (int, location) Hashtbl.t;
        counter       : int ref;
    }

    (* **************************
            ABSTRACT VALUES
       ************************** *)

    (*
      top : env -> abs_v
      bottom : env -> abs_v
    *)
    let top e = (ED.top e.ve.evars, ND.top e.ve.nvars)
    let bottom e = (ED.top e.ve.evars, ND.bottom e.ve.nvars)
    let is_bot (e, n) = ED.is_bot e || ND.is_bot n

    let print_v fmt (enum, num) =
      if is_bot (enum, num) then
        Format.fprintf fmt "⊥"
      else
        Format.fprintf fmt "@[<hov 1>(%a,@ %a)@]" ED.print enum ND.print num

    (*
      join : abs_v -> abs_v -> abs_v
      widen : abs_v -> abs_v -> abs_v
      meet : abs_v -> abs_v -> abs_v
    *)
    let join a b =
      if is_bot a then b
      else if is_bot b then a
      else (ED.join (fst a) (fst b), ND.join (snd a) (snd b))

    let widen a b =
      if is_bot a then b
      else if is_bot b then a
      else (ED.join (fst a) (fst b), ND.widen (snd a) (snd b))

    let meet (e1, n1) (e2, n2) =
      if is_bot (e1, n1) then ED.vtop e1, ND.vbottom n1
      else if is_bot (e2, n2) then ED.vtop e2, ND.vbottom n2
      else
        try (ED.meet e1 e2 , ND.meet n1 n2)
        with Bot -> ED.vtop e1, ND.vbottom n1

    (*
      eq_v : abs_v -> abs_v -> bool
      subset_v : abs_v -> abs_v -> bool
    *)
    let eq_v (a, b) (c, d) =
        (is_bot (a, b) && is_bot (c, d)) 
          || (ED.eq a c && ND.eq b d)

    let subset_v (a, b) (c, d) =
      (is_bot (a, b)) ||
        (not (is_bot (c, d)) && ED.subset a c && ND.subset b d)

    (*
      apply_cl : abs_v -> conslist -> abs_v
    *)
    let rec apply_cl (enum, num) (ec, nc, r) =
        begin match r with
        | CLTrue ->
          begin
            try (ED.apply_cl enum ec, ND.apply_cl num nc)
            with Bot -> ED.vtop enum, ND.vbottom num
          end
        | CLFalse ->
          (ED.vtop enum, ND.vbottom num)
        | CLAnd(a, b) ->
          let enum, num = apply_cl (enum, num) (ec, nc, a) in
          let enum, num = apply_cl (enum, num) ([], nc, b) in
          enum, num
        | CLOr((eca, nca, ra), (ecb, ncb, rb)) ->
          let a = apply_cl (enum, num) (ec@eca, nc@nca, ra) in 
          let b = apply_cl (enum, num) (ec@ecb, nc@ncb, rb) in 
          join a b
        end

    (*
      apply_cl_all_cases : abs_v -> conslist -> abs_v list
    *)
    let rec apply_cl_all_cases v (ec, nc, r) =
        match r with
        | CLTrue ->
          let v =
            try ED.apply_cl (fst v) ec, ND.apply_cl (snd v) nc
            with Bot -> ED.vtop (fst v), ND.vbottom (snd v)
          in
          if is_bot v then [] else [v]
        | CLFalse ->
          []
        | CLAnd(a, b) ->
          let q1 = apply_cl_all_cases v (ec, nc, a) in
          List.flatten
            (List.map (fun c -> apply_cl_all_cases c ([], [], b)) q1)
        | CLOr((eca, nca, ra), (ecb, ncb, rb)) ->
          let la = apply_cl_all_cases v (ec@eca, nc@nca, ra) in 
          let lb = apply_cl_all_cases v (ec@ecb, nc@ncb, rb) in 
          lb@(List.filter (fun a -> not (List.exists (fun b -> eq_v a b) lb)) la)


    (* ***************************
              INTERPRET
       *************************** *)



    (*
      init_env : cmdline_opt -> rooted_prog -> env
    *)
    let init_env opt rp =
        let f = Transform.f_of_prog_incl_init rp false in

        let f = simplify_k (get_root_true f) f in
        Format.printf "Complete formula:@.%a@.@." Formula_printer.print_expr f;

        let facts = get_root_true f in
        let f, rp, repls = List.fold_left
          (fun (f, (rp : rooted_prog), repls) eq ->
            match eq with
            | BEnumCons(E_EQ, a, EIdent b)
                when a.[0] <> 'L' && b.[0] <> 'L' ->

              let a = try List.assoc a repls with Not_found -> a in
              let b = try List.assoc b repls with Not_found -> b in

              if a = b then
                f, rp, repls
              else begin
                let keep, repl =
                  if String.length a <= String.length b
                    then a, b
                    else b, a
                in
                Format.printf "Replacing %s with %s@." repl keep;
                let f = formula_replace_evars [repl, keep; "L"^repl, "L"^keep] f in
                let rp =
                  { rp with all_vars =
                      List.filter (fun (_, id, _) -> id <> repl) rp.all_vars } in
                let repls = [repl, keep; "L"^repl, "L"^keep]@
                  (List.map (fun (r, k) -> r, if k = repl then keep else k) repls) in
                f, rp, repls
              end
            | _ -> f, rp, repls)
          (f, rp, []) facts in

        let f = simplify_k (get_root_true f) f in

        Format.printf "Complete formula after simpl:@.%a@.@."
            Formula_printer.print_expr f;

        let guarantees = Transform.guarantees_of_prog rp in
        let guarantees = List.map
          (fun (id, f, v) -> id, formula_replace_evars repls f, v)
          guarantees in
        Format.printf "Guarantees:@.";
        List.iter (fun (id, f, _) ->
            Format.printf "  %s: %a@." id Formula_printer.print_expr f)
          guarantees;
        Format.printf "@.";
        
        let ve = mk_varenv rp opt.disjunct f (conslist_of_f f) in

        let env = {
          rp; opt; ve; f; guarantees;
          loc = Hashtbl.create 2; counter = ref 2; } in

        (* add initial disjunction : L/must_reset = tt, L/must_reset ≠ tt *)
        let id = let i = ref 0 in fun () -> (incr i; !i) in
        let add_loc is_init conds =
          let cf = simplify_k conds f in
          let cf = simplify_k (get_root_true cf) cf in
          let id = id() in
          Hashtbl.add env.loc id
            {
              id;
              depth = 0;
              def = apply_cl (top env) (conslist_of_f cf);
              is_init;

              f = cf;
              cl = conslist_of_f cf;

              in_c = 0;
              v = bottom env;

              out_t = [];
              in_t = [];
              verif_g = [];
              violate_g = [];
            };
        in

        add_loc true [BEnumCons(E_EQ, "L/must_reset", EItem bool_true)];

        let rec div_g conds = function
          | [] -> add_loc false conds
          | (_, _, v)::r ->
            add_loc false ((BEnumCons(E_NE, v, EItem bool_true))::conds);
            div_g ((BEnumCons(E_EQ, v, EItem bool_true))::conds) r
        in
          div_g [BEnumCons(E_NE, "L/must_reset", EItem bool_true)] env.guarantees;

        env


    (*
      ternary_conds : bool_expr -> bool_expr list
    *)
    let rec ternary_conds = function
        | BAnd(a, b) -> ternary_conds a @ ternary_conds b
        | BTernary(c, a, b) as x -> [c, x]
        | _ -> []

    (*
      pass_cycle : env -> edd_v -> edd_v
      unpass_cycle : env -> edd_v -> edd_v

      set_target_case : env -> edd_v -> bool_expr -> edd_v
      cycle : env -> edd_v -> conslist -> edd_v
    *)
    let pass_cycle env (enum, num) =
        let assign_e, assign_n = List.fold_left
          (fun (ae, an) (a, b, t) -> match t with
            | TEnum _ -> (a, b)::ae, an
            | TInt | TReal -> ae, (a, NIdent b)::an)
          ([], []) env.cycle in

        let enum = ED.assign enum assign_e in
        let num = ND.assign num assign_n in

        let ef, nf = List.fold_left
            (fun (ef, nf) (var, t) -> match t with
              | TEnum _ -> var::ef, nf
              | TReal | TInt -> ef, var::nf)
            ([], []) env.forget in

        (ED.forgetvars enum ef, List.fold_left ND.forgetvar num nf)

    let unpass_cycle env (enum, num) =
        let assign_e, assign_n = List.fold_left
          (fun (ae, an) (a, b, t) -> match t with
            | TEnum _ -> (b, a)::ae, an
            | TInt | TReal -> ae, (b, NIdent a)::an)
          ([], []) env.ve.cycle in

        let enum = ED.assign enum assign_e in
        let num = ND.assign num assign_n in

        let ef, nf = List.fold_left
            (fun (ef, nf) (var, t) -> match t with
              | TEnum _ -> var::ef, nf
              | TReal | TInt -> ef, var::nf)
            ([], []) env.ve.forget_inv in

        (ED.forgetvars enum ef, List.fold_left ND.forgetvar num nf)

    (*
      print_locs : env -> unit
    *)

    let print_locs_defs e =
        Hashtbl.iter
          (fun id loc ->
            Format.printf "q%d: @[<v 2>%a@]@." id print_v loc.def;
            )
          e.loc

    let print_locs e =
        Hashtbl.iter
          (fun id loc ->
            Format.printf "@.";
            Format.printf "q%d (depth = %d):@.  D: @[<v 2>%a@]@." id loc.depth print_v loc.def;
            (*Format.printf "  F: (%a)@." Formula_printer.print_expr loc.f;*)
            Format.printf "  V: %a@." print_v loc.v;
            Format.printf " -> @[<hov>[%a]@]@."
              (print_list (fun fmt i -> Format.fprintf fmt "q%d" i) ", ") loc.out_t;
            )
          e.loc

    let dump_graphwiz_trans_graph e file =
        let o = open_out file in
        let fmt = Format.formatter_of_out_channel o in
        Format.fprintf fmt "digraph G{@.";

        Hashtbl.iter
          (fun id loc ->
            if loc.is_init then
              Format.fprintf fmt "  q%d [shape=doublecircle, label=\"q%d [%a]\"];@."
                id id (print_list Format.pp_print_string ", ") loc.violate_g
            else
              Format.fprintf fmt "  q%d [label=\"q%d [%a]\"];@."
                id id (print_list Format.pp_print_string ", ") loc.violate_g;
            let n1 = List.length loc.violate_g in
            List.iter
              (fun v ->
                let n2 = List.length (Hashtbl.find e.loc v).violate_g in
                let c, w =
                  if n2 > n1 then "#770000", 1
                  else "black", 2
                in
                Format.fprintf fmt "  q%d -> q%d [color = \"%s\", weight = %d];@."
                  id v c w)
              loc.out_t)
          e.loc;

        Format.fprintf fmt "}@.";
        close_out o
      

    (*
      chaotic_iter : env -> unit

      Fills the values of loc[*].v, and updates out_t and in_t
    *)
    let chaotic_iter e =
        let delta = ref [] in

        (* Fill up initial states *)
        Hashtbl.iter
          (fun q loc ->
            loc.out_t <- [];
            loc.in_t <- [];
            loc.in_c <- 0;
            if loc.is_init then begin
              loc.v <- apply_cl (top e) loc.cl;
              delta := q::!delta
            end else
              loc.v <- bottom e)
          e.loc;

        (*print_locs_defs e;*)

        (* Iterate *)
        let it_counter = ref 0 in
        while !delta <> [] do
          let s = List.hd !delta in
          let loc = Hashtbl.find e.loc s in

          incr it_counter;
          Format.printf "@.Iteration %d: q%d@." !it_counter s;

          let start = loc.v in
          let f i =
            (*Format.printf "I: %a@." print_v i;*)
            let i' = meet i (unpass_cycle e loc.def) in
            (*Format.printf "I': %a@." print_v i';*)
            let j = join start
              (apply_cl
                (meet (pass_cycle e.ve i') loc.def)
                loc.cl) in
            (*Format.printf "J: %a@." print_v j;*)
            j
          in

          let rec iter n i =
            let fi = f i in
            let j = 
                if n < e.opt.widen_delay then
                  join i fi
                else
                  widen i fi
            in
            if eq_v i j
              then i
              else iter (n+1) j
          in
          let y = iter 0 start in
          let z = f y in
          let u = pass_cycle e.ve z in

          if e.opt.verbose_ci then
            Format.printf "Fixpoint: %a@. mem fp: %a@." print_v z print_v u;

          loc.v <- z;

          Hashtbl.iter
            (fun t loc2 ->
                let v = meet u loc2.def in
                let w = apply_cl v loc2.cl in
                (*Format.printf "u: %a@.v: %a@. w: %a@." print_v u print_v v print_v w;*)
                if not (is_bot w) then begin
                  if e.opt.verbose_ci then
                    Format.printf "%d -> %d with:@.  %a@." s t print_v w;
                  if not (List.mem s loc2.in_t)
                    then loc2.in_t <- s::loc2.in_t;
                  if not (List.mem t loc.out_t)
                    then loc.out_t <- t::loc.out_t;
                  if not (subset_v w loc2.v) then begin
                    if loc2.in_c < e.opt.widen_delay then
                      loc2.v <- join loc2.v w
                    else
                      loc2.v <- widen loc2.v w;
                    loc2.in_c <- loc2.in_c + 1;
                    if not (List.mem t !delta)
                      then delta := t::!delta
                  end
                end)
            e.loc;

          delta := List.filter ((<>) s) !delta;
        done;

        (* remove useless locations *)
        let useless = ref [] in
        Hashtbl.iter
          (fun i loc ->
            if is_bot loc.v then begin
              Format.printf "Useless location detected: q%d@." i;
              useless := i::!useless
            end)
          e.loc;
        List.iter (Hashtbl.remove e.loc) !useless;

        (* check which states verify/violate guarantees *)
        Hashtbl.iter
          (fun _ loc ->
            let verif, violate = List.partition
              (fun (_, f, _) ->
                is_bot (apply_cl loc.v (conslist_of_f f)))
              e.guarantees
            in
            loc.verif_g <- List.map (fun (a, b, c) -> a) verif;
            loc.violate_g <- List.map (fun (a, b, c) -> a) violate)
          e.loc;

        print_locs e;

        ()



    let do_prog opt rp =
        let e = init_env opt rp in

        let rec iter n =
          Format.printf "@.--------------@.Refinement #%d@." n;

          chaotic_iter e;
          dump_graphwiz_trans_graph e (Format.sprintf "/tmp/part%03d.dot" n);

          let qc = ref None in

          if Hashtbl.length e.loc < e.opt.max_dp_width then begin
            (* put true or false conditions into location definition *)
            Hashtbl.iter
              (fun q (loc : location) ->
                let rec iter () =
                  try
                    let cond, _ = List.find
                      (fun (c, _) ->
                        is_bot (apply_cl loc.v (conslist_of_f c))
                        || is_bot (apply_cl loc.v (conslist_of_f (BNot c))))
                      (ternary_conds loc.f)
                    in
                    let tr =
                      if is_bot (apply_cl loc.v (conslist_of_f cond))
                      then BNot cond
                      else cond
                    in
                    loc.def <- apply_cl loc.def (conslist_of_f tr);
                    loc.f <- simplify_k [tr] loc.f;
                    loc.f <- simplify_k (get_root_true loc.f) loc.f;
                    loc.cl <- conslist_of_f loc.f;
                    iter()
                  with Not_found -> ()
                in iter ())
              e.loc;

            (* find splitting condition *)
            let voi = List.map (fun (a, b, c) -> c) e.guarantees in

            Hashtbl.iter
              (fun q (loc:location) ->
                if loc.depth < e.opt.max_dp_depth then
                let cs = ternary_conds loc.f in
                List.iter
                  (fun (c, exprs) ->
                    let cases_t = apply_cl_all_cases (top e) (conslist_of_f c) in
                    let cases_f = apply_cl_all_cases (top e) (conslist_of_f (BNot c)) in
                    let cases = List.mapi (fun i c -> i, c) (cases_t @ cases_f) in
                    if
                      List.length 
                        (List.filter
                          (fun (_, case) -> not (is_bot (meet loc.v case)))
                          cases)
                        >= 2
                    then
                      (* calculate which transitions qi -> q stay or are destroyed (approximation) *)
                      let in_tc =
                        List.flatten @@ List.map
                          (fun qi ->
                            let loci = Hashtbl.find e.loc qi in
                            let v = apply_cl
                              (meet (pass_cycle e.ve loci.v) loc.def)
                              loc.cl in
                            List.map
                              (fun (ci, case) -> qi, ci, not (is_bot (meet v case)))
                              cases)
                          loc.in_t
                      in
                      (* calculate which transitions q -> qo stay or are destroyed (approximation) *)
                      let out_tc =
                        List.flatten @@ List.map
                          (fun (ci, case) ->
                            let v = meet loc.v case in
                            List.map
                              (fun qo ->
                                  let loco = Hashtbl.find e.loc qo in
                                  let w = apply_cl
                                    (meet (pass_cycle e.ve v) loco.def)
                                    loco.cl
                                  in qo, ci, not (is_bot w))
                              loc.out_t)
                          cases
                      in
                      (* calculate which cases have a good number of disappearing transitions *)
                      let fa =
                        let cs_sc =
                          List.map
                            (fun (ci, case) ->
                              let a = 
                                List.length
                                  (List.filter (fun (qi, c, a) -> not a && c = ci) in_tc)
                              in
                              let b =
                                List.length
                                  (List.filter (fun (qo, c, a) -> not a && c = ci) out_tc)
                              in
                              a + b + a * b)
                            cases
                        in
                        let a = List.fold_left max 0 cs_sc in
                        let b = if a = 0 then 0 else
                          List.length @@ List.filter
                            (fun qi ->
                              let qos = List.flatten @@ List.map
                                (fun (cid, c) ->
                                  if List.exists (fun (qi0, c0, a) -> a && qi0 = qi && c0 = cid) in_tc
                                  then
                                    List.map (fun (qo, _, _) -> qo) @@
                                      List.filter (fun (_, c1, a) -> a && cid = c1) out_tc
                                  else [])
                                cases
                              in
                              List.exists (fun qo -> not (List.mem qo qos)) loc.out_t)
                            loc.in_t
                        in
                        5 * a + 17 * b
                      in
                      if fa <> 0 then begin
                        (* calculate which states become inaccessible *)
                        let fb =
                          if List.for_all (fun (_, _, a) -> a) out_tc
                          then 0
                          else
                            let ff id =   (* transition function for new graph *)
                              if id >= 1000000 then
                                let case = id - 1000000 in
                                List.map (fun (qo, _, _) -> qo)
                                  (List.filter (fun (_, c, a) -> c = case && a) out_tc)
                              else
                                let out_t = (Hashtbl.find e.loc id).out_t in
                                if List.mem loc.id out_t then
                                  (List.map (fun (_, c, _) -> c + 1000000)
                                    (List.filter (fun (qi, _, a) -> qi = id && a) in_tc))
                                  @ (List.filter ((<>) id) out_t)
                                else out_t
                            in
                            let memo = Hashtbl.create 12 in
                            let rec do_x id =
                              if not (Hashtbl.mem memo id) then begin
                                Hashtbl.add memo id ();
                                List.iter do_x (ff id)
                              end
                            in
                            Hashtbl.iter (fun i loc2 -> if loc2.is_init && i <> loc.id then do_x i) e.loc;
                            if loc.is_init then List.iter (fun (ci, _) -> do_x (ci+1000000)) cases;
                            let disappear_count = (Hashtbl.length e.loc + List.length cases) - (Hashtbl.length memo) in
                            21 * disappear_count
                        in
                        (* calculate in/out count, weighted by changing guarantees *)
                        let fc =
                          1 * (2 * List.length loc.out_t + List.length loc.in_t)
                        in
                        (* calculate number of VOI (variables of interest) that are affected *)
                        let fd =
                          let vlist = refd_evars_of_f exprs in
                          3 * List.length
                          (List.filter (fun v -> List.mem v vlist) voi) in
                        (* give score to split *)
                        let score =
                          if fa = 0 then 0 else
                            fa + fb + fc + fd
                        in
                        Format.printf " %5d + %5d + %5d + %5d = %5d  (q%d)@." fa fb fc fd score loc.id;
                        if score > 0 &&
                          match !qc with
                          | None -> true
                          | Some (s, _, _, _, _) -> score >= s
                        then
                          qc := Some(score, q, c, cases_t, cases_f)
                      end)
                  cs
              )
              e.loc;

            match !qc with
            | None ->
              Format.printf "@.Found no more possible refinement.@.@."
            | Some (score, q, c, cases_t, cases_f) ->
              Format.printf "@.Refine q%d : @[<v 2>[ %a ]@]@." q
                (print_list print_v ", ") (cases_t@cases_f);

              let loc = Hashtbl.find e.loc q in
              Hashtbl.remove e.loc loc.id;

              let handle_case cc case =
                  if not (is_bot (meet loc.v case)) then
                    let ff = simplify_k [cc] loc.f in
                    let ff = simplify_k (get_root_true ff) ff in
                  
                    let loc2 =
                      { loc with
                        id = (incr e.counter; !(e.counter));
                        depth = loc.depth + 1;
                        def = meet loc.def case;
                        f = ff;
                        cl = conslist_of_f ff } in
                    Hashtbl.add e.loc loc2.id loc2
              in
                List.iter (handle_case c) cases_t;
                List.iter (handle_case (BNot c)) cases_f;
                          
              iter (n+1)
          end
        in iter 0;

        (* Check guarantees *)
        let check_guarantee (id, f, _) =
          Format.printf "@[<v 4>";
          let cl = Formula.conslist_of_f f in
          Format.printf "%s:@ %a ⇒ ⊥  @ "
            id Formula_printer.print_conslist cl;
          let violate = ref [] in
          Hashtbl.iter
            (fun lid loc ->
              if List.mem id loc.violate_g then
                violate := lid::!violate)
            e.loc;
          if !violate = [] then
            Format.printf "OK"
          else
            Format.printf "VIOLATED in @[<hov 2>[ %a ]@]"
              (print_list (fun fmt i -> Format.fprintf fmt "q%d" i) ", ") !violate;
          Format.printf "@]@ ";
        in
        if e.guarantees <> [] then begin
          Format.printf "Guarantee @[<v 0>";
          List.iter check_guarantee e.guarantees;
          Format.printf "@]@."
        end;

        (* Examine probes *)
        if List.exists (fun (p, _, _) -> p) e.ve.all_vars then begin
          let final =
            Hashtbl.fold
              (fun _ loc v -> join v loc.v)
              e.loc (bottom e) in

          Format.printf "Probes: @[<v 0>";
          List.iter (fun (p, id, ty) ->
            if p then match ty with
            | TInt | TReal ->
              Format.printf "%a ∊ %a@ " Formula_printer.print_id id
                ND.print_itv (ND.project (snd final) id)
            | TEnum _ -> Format.printf "%a : enum variable@ "
                Formula_printer.print_id id)
            e.ve.all_vars;
          Format.printf "@]@."
        end



end