summaryrefslogtreecommitdiff
path: root/sched/simplify.ml
blob: c47a9d09cb19f859aa25f36989e1dd58f6cced70 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
(* SIMPLIFICATION PASSES *)

(*
	Order of simplifications :
	- cascade slices and selects
	- transform k = SLICE i j var when var = CONCAT var' var''
	- simplify stupid things (a xor 0 = a, a and 0 = 0, etc.)
	  transform k = SLICE i i var into k = SELECT i var
	- transform k = SELECT 0 var into k = var when var is also one bit
	- look for variables with same equation, put the second to identity
	- eliminate k' for each equation k' = k
	- topological sort

	TODO : eliminate unused variables. problem : they are hard to identify
*)

open Netlist_ast

module Sset = Set.Make(String)
module Smap = Map.Make(String)

(* Simplify cascade slicing/selecting *)
let cascade_slices p =
	let usefull = ref false in
	let slices = Hashtbl.create 42 in
	let eqs_new = List.map
		(fun (n, eq) -> (n, match eq with
			| Eslice(u, v, Avar(x)) ->
				let dec, nx =
					if Hashtbl.mem slices x then begin
						Hashtbl.find slices x
					end else 
						 (0, x)
				in
				Hashtbl.add slices n (u + dec, nx);
				if nx <> x || dec <> 0 then usefull := true;
				Eslice(u + dec, v + dec, Avar(nx))
			| Eselect(u, Avar(x)) ->
				begin try
					let ku, kx = Hashtbl.find slices x in
					usefull := true;
					Eselect(ku + u, Avar(kx))
				with
					Not_found -> Eselect(u, Avar(x))
				end
			| _ -> eq))
		p.p_eqs in
	{
		p_eqs = eqs_new;
		p_inputs = p.p_inputs;
		p_outputs = p.p_outputs;
		p_vars = p.p_vars;
	}, !usefull

(* If
	var = CONCAT a b
	x = SLICE i j var
	or
	y = SELECT i var
	then x or y may be simplified
*)
let pass_concat p =
	let usefull = ref false in
	let concats = Hashtbl.create 42 in
	List.iter (fun (n, eq) -> match eq with
			| Econcat(x, y) ->
				let s1 = match x with
					| Aconst(a) -> Array.length a
					| Avar(z) -> Env.find z p.p_vars
				in let s2 = match y with
					| Aconst(a) -> Array.length a
					| Avar(z) -> Env.find z p.p_vars
				in
				Hashtbl.add concats n (x, s1, y, s2)
			| _ -> ()) p.p_eqs;
	let eqs_new = List.map
		(fun (n, eq) -> (n, match eq with
			| Eselect(i, Avar(n)) ->
				begin try
					let (x, s1, y, s2) = Hashtbl.find concats n in
					usefull := true;
					if i < s1 then
						Eselect(i, x)
					else
						Eselect(i-s1, y)
				with Not_found -> eq end
			| Eslice(i, j, Avar(n)) ->
				begin try
					let (x, s1, y, s2) = Hashtbl.find concats n in
					if j < s1 then begin
						usefull := true;
						Eslice(i, j, x)
					end else if i >= s1 then begin
						usefull := true;
						Eslice(i - s1, j - s1, y)
					end else eq
				with Not_found -> eq end
			| _ -> eq))
		p.p_eqs in
	{
		p_eqs = eqs_new;
		p_inputs = p.p_inputs;
		p_outputs = p.p_outputs;
		p_vars = p.p_vars;
	}, !usefull
				

(* Simplifies some trivial arithmetic possibilites :
	a and 1 = a
	a and 0 = 0
	a or 1 = 1
	a or 0 = a
	a xor 0 = a
	slice i i x = select i x
	concat const const = const.const
	slice i j const = const.[i..j]
	select i const = const.[i]
*)
let arith_simplify p =
	let usefull = ref false in
	{
		p_eqs = List.map
			(fun (n, eq) ->
			let useless = ref false in
			let neq = match eq with
			| Ebinop(Or, Aconst([|false|]), x) -> Earg(x)
			| Ebinop(Or, Aconst([|true|]), x) -> Earg(Aconst([|true|]))
			| Ebinop(Or, x, Aconst([|false|])) -> Earg(x)
			| Ebinop(Or, x, Aconst([|true|])) -> Earg(Aconst([|true|]))

			| Ebinop(And, Aconst([|false|]), x) -> Earg(Aconst([|false|]))
			| Ebinop(And, Aconst([|true|]), x) -> Earg(x)
			| Ebinop(And, x, Aconst([|false|])) -> Earg(Aconst([|false|]))
			| Ebinop(And, x, Aconst([|true|])) -> Earg(x)

			| Ebinop(Xor, Aconst([|false|]), x) -> Earg(x)
			| Ebinop(Xor, x, Aconst([|false|])) -> Earg(x)

			| Eslice(i, j, k) when i = j -> Eselect(i, k)

			| Econcat(Aconst(a), Aconst(b)) ->
				Earg(Aconst(Array.append a b))
			
			| Eslice(i, j, Aconst(a)) ->
				Earg(Aconst(Array.sub a i (j - i + 1)))
			
			| Eselect(i, Aconst(a)) ->
				Earg(Aconst([|a.(i)|]))
			
			| _ ->  useless := true; eq in
			if not !useless then usefull := true;
			(n, neq))
			p.p_eqs;
		p_inputs = p.p_inputs;
		p_outputs = p.p_outputs;
		p_vars = p.p_vars;
	}, !usefull

(* if x is one bit, then :
	select 0 x = x
  and same thing with select
*)
let select_to_id p =
	let usefull = ref false in
	{
		p_eqs = List.map
			(fun (n, eq) -> match eq with
			| Eselect(0, Avar(id)) when Env.find id p.p_vars = 1 ->
				usefull := true;
				(n, Earg(Avar(id)))
			| Eslice(0, sz, Avar(id)) when Env.find id p.p_vars = sz + 1 ->
				usefull := true;
				(n, Earg(Avar(id)))
			| _ -> (n, eq))
			p.p_eqs;
		p_inputs = p.p_inputs;
		p_outputs = p.p_outputs;
		p_vars = p.p_vars;
	}, !usefull

(*
	If a = eqn(v1, v2, ...) and b = eqn(v1, v2, ...)   <- the same equation
	then say b = a
*)
let same_eq_simplify p =
	let usefull = ref false in
	let id_outputs =
		(List.fold_left (fun x k -> Sset.add k x) Sset.empty p.p_outputs) in
	let eq_map = Hashtbl.create 42 in
	List.iter
		(fun (n, eq) -> if Sset.mem n id_outputs then
			Hashtbl.add eq_map eq n)
		p.p_eqs;
	let simplify_eq (n, eq) =
		if Sset.mem n id_outputs then
			(n, eq)
		else if Hashtbl.mem eq_map eq then begin
			usefull := true;
			(n, Earg(Avar(Hashtbl.find eq_map eq)))
		end else begin
			Hashtbl.add eq_map eq n;
			(n, eq)
		end
	in
	let eq2 = List.map simplify_eq p.p_eqs in
	{
		p_eqs = eq2;
		p_inputs = p.p_inputs;
		p_outputs = p.p_outputs;
		p_vars = p.p_vars;
	}, !usefull


(*	Replace one specific variable by another argument in the arguments of all equations
	(possibly a constant, possibly another variable)
*)
let eliminate_var var rep p =
	let rep_arg = function
		| Avar(i) when i = var -> rep
		| k -> k
	in
	let rep_eqs = List.map
		(fun (n, eq) -> (n, match eq with
			| Earg(a) -> Earg(rep_arg a)
			| Ereg(i) when i = var ->
				begin match rep with
				| Avar(j) -> Ereg(j)
				| Aconst(k) -> Earg(Aconst(k))
				end
			| Ereg(j) -> Ereg(j)
			| Enot(a) -> Enot(rep_arg a)
			| Ebinop(o, a, b) -> Ebinop(o, rep_arg a, rep_arg b)
			| Emux(a, b, c) -> Emux(rep_arg a, rep_arg b, rep_arg c)
			| Erom(u, v, a) -> Erom(u, v, rep_arg a)
			| Eram(u, v, a, b, c, d) -> Eram(u, v, rep_arg a, rep_arg b, rep_arg c, rep_arg d)
			| Econcat(a, b) -> Econcat(rep_arg a, rep_arg b)
			| Eslice(u, v, a) -> Eslice(u, v, rep_arg a)
			| Eselect(u, a) -> Eselect(u, rep_arg a)
			))
		p.p_eqs in
	{
		p_eqs = List.fold_left
			(fun x (n, eq) ->
				if n = var then x else (n, eq)::x)
			[] rep_eqs;
		p_inputs = p.p_inputs;
		p_outputs = p.p_outputs;
		p_vars = Env.remove var p.p_vars;
	}

(* Remove all equations of type :
	a = b
	a = const
	(except if a is an output variable)
*)
let rec eliminate_id p =
	let id_outputs =
		(List.fold_left (fun x k -> Sset.add k x) Sset.empty p.p_outputs) in

	let rep =
		List.fold_left
			(fun x (n, eq) ->
				if x = None && (not (Sset.mem n id_outputs)) then
					match eq with
					| Earg(rarg) -> 
						Some(n, rarg)
					| _ -> None
				else
					x)
			None p.p_eqs in
	match rep with
	| None -> p, false
	| Some(n, rep) -> fst (eliminate_id (eliminate_var n rep p)), true

(* Eliminate dead variables *)
let eliminate_dead p =
	let rec living basis =
		let new_basis = List.fold_left
			(fun b2 (n, eq) ->
				if Sset.mem n b2 then
					List.fold_left
						(fun x k -> Sset.add k x)
						b2
						(Scheduler.read_exp_all eq)
				else
					b2)
			basis (List.rev p.p_eqs)
		in
		if Sset.cardinal new_basis > Sset.cardinal basis
			then living new_basis
			else new_basis
	in
	let outs = List.fold_left (fun x k -> Sset.add k x) Sset.empty p.p_outputs in
	let ins = List.fold_left (fun x k -> Sset.add k x) Sset.empty p.p_inputs in
	let live = living (Sset.union outs ins) in
	{
		p_eqs = List.filter (fun (n, _) -> Sset.mem n live) p.p_eqs;
		p_inputs = p.p_inputs;
		p_outputs = p.p_outputs;
		p_vars = Env.fold
			(fun k s newenv -> 
				if Sset.mem k live
					then Env.add k s newenv
					else newenv)
			p.p_vars Env.empty
	}, (Sset.cardinal live < Env.cardinal p.p_vars)

(* Topological sort *)
let topo_sort p =
	(Scheduler.schedule p, false)


(* Apply all the simplification passes,
	in the order given in the header of this file
*)
let rec simplify_with steps p =
	let pp, use = List.fold_left
		(fun (x, u) (f, n) ->
			print_string n;
			let xx, uu = f x in 
			print_string (if uu then " *\n" else "\n");
			(xx, u || uu))
		(p, false) steps in
	if use then simplify_with steps pp else pp

let simplify p =
	let p = simplify_with [
		topo_sort, "topo_sort";
		cascade_slices, "cascade_slices";
		pass_concat, "pass_concat";
		arith_simplify, "arith_simplify";
		select_to_id, "select_to_id";
		same_eq_simplify, "same_eq_simplify"; 
		eliminate_id, "eliminate_id";
	] p in
	let p = simplify_with [
		eliminate_dead, "eliminate_dead";
		topo_sort, "topo_sort";	(* make sure last step is a topological sort *)
	] p in
	p