summaryrefslogtreecommitdiff
path: root/sched/simplify.ml
blob: 5ca4b9970c93e91d41d3b5851e24aa6ef3a60aeb (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
(* SIMPLIFICATION PASSES *)

(*
	Order of simplifications :
	- cascade slices and selects
	- simplify stupid things (a xor 0 = a, a and 0 = 0, etc.)
	  transform k = SLICE i i var into k = SELECT i var
	- transform k = SELECT 0 var into k = var when var is also one bit
	- look for variables with same equation, put the second to identity
	- eliminate k' for each equation k' = k
	- topological sort

	TODO : eliminate unused variables. problem : they are hard to identify
*)

open Netlist_ast

module Sset = Set.Make(String)
module Smap = Map.Make(String)

(* Simplify cascade slicing/selecting *)
let cascade_slices p =
	let slices = Hashtbl.create 42 in
	let eqs_new = List.map
		(fun (n, eq) -> (n, match eq with
			| Eslice(u, v, Avar(x)) ->
				let dec, nx =
					if Hashtbl.mem slices x then begin
						Hashtbl.find slices x
					end else 
						 (0, x)
				in
				Hashtbl.add slices n (u + dec, nx);
				Eslice(u + dec, v + dec, Avar(nx))
			| Eselect(u, Avar(x)) ->
				begin try
					let ku, kx = Hashtbl.find slices x in
					Eselect(ku + u, Avar(kx))
				with
					Not_found -> Eselect(u, Avar(x))
				end
			| _ -> eq))
		p.p_eqs in
	{
		p_eqs = eqs_new;
		p_inputs = p.p_inputs;
		p_outputs = p.p_outputs;
		p_vars = p.p_vars;
	}, false

(* Simplifies some trivial arithmetic possibilites :
	a and 1 = a
	a and 0 = 0
	a or 1 = 1
	a or 0 = a
	a xor 0 = a
	slice i i x = select i x
	concat const const = const.const
	slice i j const = const.[i..j]
	select i const = const.[i]
*)
let arith_simplify p =
	{
		p_eqs = List.map
			(fun (n, eq) -> match eq with
			| Ebinop(Or, Aconst(VBit(false)), x) -> (n, Earg(x))
			| Ebinop(Or, Aconst(VBit(true)), x) -> (n, Earg(Aconst(VBit(true))))
			| Ebinop(Or, x, Aconst(VBit(false))) -> (n, Earg(x))
			| Ebinop(Or, x, Aconst(VBit(true))) -> (n, Earg(Aconst(VBit(true))))

			| Ebinop(And, Aconst(VBit(false)), x) -> (n, Earg(Aconst(VBit(false))))
			| Ebinop(And, Aconst(VBit(true)), x) -> (n, Earg(x))
			| Ebinop(And, x, Aconst(VBit(false))) -> (n, Earg(Aconst(VBit(false))))
			| Ebinop(And, x, Aconst(VBit(true))) -> (n, Earg(x))

			| Ebinop(Xor, Aconst(VBit(false)), x) -> (n, Earg(x))
			| Ebinop(Xor, x, Aconst(VBit(false))) -> (n, Earg(x))

			| Eslice(i, j, k) when i = j ->
				(n, Eselect(i, k))

			| Econcat(Aconst(a), Aconst(b)) ->
				let aa = match a with
					| VBit(a) -> [| a |]
					| VBitArray(a) -> a
				in
				let ba = match b with
					| VBit(a) -> [| a |]
					| VBitArray(a) -> a
				in
				(n, Earg(Aconst(VBitArray(Array.append aa ba))))
			
			| Eslice(i, j, Aconst(VBitArray(a))) ->
				(n, Earg(Aconst(VBitArray(Array.sub a i (j - i + 1)))))
			
			| Eselect(i, Aconst(VBitArray(a))) ->
				(n, Earg(Aconst(VBit(a.(i)))))
			
			| _ -> (n, eq))
			p.p_eqs;
		p_inputs = p.p_inputs;
		p_outputs = p.p_outputs;
		p_vars = p.p_vars;
	}, false

(* if x is one bit, then :
	select 0 x = x
*)
let select_to_id p =
	{
		p_eqs = List.map
			(fun (n, eq) -> match eq with
			| Eselect(0, Avar(id)) when
				Env.find id p.p_vars = TBit || Env.find id p.p_vars = TBitArray(1) ->
					(n, Earg(Avar(id)))
			| _ -> (n, eq))
			p.p_eqs;
		p_inputs = p.p_inputs;
		p_outputs = p.p_outputs;
		p_vars = p.p_vars;
	}, false

(*
	If a = eqn(v1, v2, ...) and b = eqn(v1, v2, ...)   <- the same equation
	then say b = a
*)
let same_eq_simplify p =
	let id_outputs =
		(List.fold_left (fun x k -> Sset.add k x) Sset.empty p.p_outputs) in
	let eq_map = Hashtbl.create 42 in
	List.iter
		(fun (n, eq) -> if Sset.mem n id_outputs then
			Hashtbl.add eq_map eq n)
		p.p_eqs;
	let simplify_eq (n, eq) =
		if Sset.mem n id_outputs then
			(n, eq)
		else if Hashtbl.mem eq_map eq then
			(n, Earg(Avar(Hashtbl.find eq_map eq)))
		else begin
			Hashtbl.add eq_map eq n;
			(n, eq)
		end
	in
	let eq2 = List.map simplify_eq p.p_eqs in
	{
		p_eqs = eq2;
		p_inputs = p.p_inputs;
		p_outputs = p.p_outputs;
		p_vars = p.p_vars;
	}, false


(*	Replace one specific variable by another argument in the arguments of all equations
	(possibly a constant, possibly another variable)
*)
let eliminate_var var rep p =
	let rep_arg = function
		| Avar(i) when i = var -> rep
		| k -> k
	in
	let rep_eqs = List.map
		(fun (n, eq) -> (n, match eq with
			| Earg(a) -> Earg(rep_arg a)
			| Ereg(i) when i = var ->
				begin match rep with
				| Avar(j) -> Ereg(j)
				| Aconst(k) -> Earg(Aconst(k))
				end
			| Ereg(j) -> Ereg(j)
			| Enot(a) -> Enot(rep_arg a)
			| Ebinop(o, a, b) -> Ebinop(o, rep_arg a, rep_arg b)
			| Emux(a, b, c) -> Emux(rep_arg a, rep_arg b, rep_arg c)
			| Erom(u, v, a) -> Erom(u, v, rep_arg a)
			| Eram(u, v, a, b, c, d) -> Eram(u, v, rep_arg a, rep_arg b, rep_arg c, rep_arg d)
			| Econcat(a, b) -> Econcat(rep_arg a, rep_arg b)
			| Eslice(u, v, a) -> Eslice(u, v, rep_arg a)
			| Eselect(u, a) -> Eselect(u, rep_arg a)
			))
		p.p_eqs in
	{
		p_eqs = List.fold_left
			(fun x (n, eq) ->
				if n = var then x else (n, eq)::x)
			[] rep_eqs;
		p_inputs = p.p_inputs;
		p_outputs = p.p_outputs;
		p_vars = Env.remove var p.p_vars;
	}

(* Remove all equations of type :
	a = b
	a = const
	(except if a is an output variable)
*)
let rec eliminate_id p =
	let id_outputs =
		(List.fold_left (fun x k -> Sset.add k x) Sset.empty p.p_outputs) in

	let rep =
		List.fold_left
			(fun x (n, eq) ->
				if x = None && (not (Sset.mem n id_outputs)) then
					match eq with
					| Earg(rarg) -> 
						Some(n, rarg)
					| _ -> None
				else
					x)
			None p.p_eqs in
	match rep with
	| None -> p, false
	| Some(n, rep) -> fst (eliminate_id (eliminate_var n rep p)), true

(* Topological sort *)
let topo_sort p =
	(Scheduler.schedule p, false)

(* Apply all the simplification passes,
	in the order given in the header of this file
*)
let rec simplify p =
	let steps = [
		cascade_slices;
		arith_simplify;
		select_to_id;
		same_eq_simplify; 
		eliminate_id;
		topo_sort;
	] in
	let pp, use = List.fold_left
		(fun (x, u) f ->
			let xx, uu = f x in 
			(xx, u || uu))
		(p, false) steps in
	if use then simplify pp else pp